首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of some divalent cations on protoplast transfection mediated by polyethylene glycol of Lactobacillus casei ATCC 27092 by PL-1 phage DNA in 50 mM Tris-maleate buffer (pH 6.0) were investigated. The efficiency of transfection increased about 30 times in the presence of 10 mM Ca2+ , Sr2+ increased the transfection rate as well, but Ba2+, Mn2+, and Mg2+ did not. Co2+ and Zn2+ inhibited transfection. The simultaneous use of Ca2+ and Mg2+ increased the transfection efficiency. Impairment of transfection caused by lack of Ca2+ could not be reversed by the addition of Ca2+ later. A decrease in the Ca2+ concentration to an ineffective level before transfection ended immediately inhibited transfection. Protoplasts were transfected with a phage adsorption mutant resistant to PL-1, also, and these metal ions had the same effect. Multiplication of phages in the transfected protoplasts was independent of the presence or absence of calcium ions. Calcium ions seemed to be involved in the entry of PL-1 DNA into the host protoplasts.  相似文献   

2.
The effects of some divalent cations on protoplast transfection mediated by polyethylene glycol of Lactobacillus casei ATCC 27092 by PL-1 phage DNA in 50 mM Tris-maleate buffer (pH 6.0) were investigated. The efficiency of transfection increased about 30 times in the presence of 10 mM Ca2+. Sr2+ increased the transfection rate as well, but Ba2+, Mn2+, and Mg2+ did not. Co2+ and Zn2+ inhibited transfection. The simultaneous use of Ca2+ and Mg2+ increased the transfection efficiency. Impairment of transfection caused by lack of Ca2+ could not be reversed by the addition of Ca2+ later. A decrease in the Ca2+ concentration to an ineffective level before transfection ended immediately inhibited transfection. Protoplasts were transfected with a phage adsorption mutant resistant to PL-1, also, and these metal ions had the same effect. Multiplication of phages in the transfected protoplasts was independent of the presence or absence of calcium ions. Calcium ions seemed to be involved in the entry of PL-1 DNA into the host protoplasts.  相似文献   

3.
Transgenic soybean (Glycine max L.) cells expressing aequorin were used to monitor changes in cytosolic Ca2+ concentrations in response to treatment with fungal elicitors. After an apparent lag phase of about 60 s, both chitin fragments and β-glucan elicitors caused a rapid increase in cytosolic Ca2+ concentration, which peaked within 2–2.5 min of treatment. The Ca2+ concentration then decreased and reached the basal level after about 5 min in the case of the treatment with chitin fragments, while a second rise in the Ca2+ concentration with a maximum occurring after about 7–8 min was observed in the case of β-glucan treatment. Calibration of the signals showed that the elicitors enhanced the cytosolic Ca2+ concentration from resting concentrations as low as 0.1 lM to highest levels of about 2 lM. Dose-response experiments showed that the concentration of elicitors giving a Ca2+ response at the 50% level was 0.4 nM for the chitin fragment and 28 lM and 72 lM, respectively, for a synthetic hepta-β-glucoside and a fungal β-glucan fraction. The β-glucan- or N,N′,N′′,N′′′-tetraacetyl chitotetratose (CH4)-induced Ca2+ signals were inhibited by both the Ca2+ chelator 1,2-bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and by the Ca2+-channel inhibitor La3+. Neomycin, whose target in plant cells has not yet been clearly identified, reduced predominantly the expression of the second peak of the biphasic Ca2+ curve following β-glucan treatment. Bacterial cyclic β-glucans known to suppress β-glucan-induced phytoalexin production were also found to function as a suppressor for the Ca2+ response that was elicited by the fungal β-glucans. The results clearly show that the increase in the cytosolic Ca2+ concentration is an early and rapid event in the elicitor-sensing mechanism of soybean cells, and is probably connected with the subsequent activation of defence responses. Received: 23 July 1998 / Accepted: 16 October 1998  相似文献   

4.
We tried to determine the mechanisms by which Ca2+ mediated NO-induced programmed cell death (PCD) in tobacco protoplasts. Treatment of tobacco protoplasts with the NO donor sodium nitroprusside (SNP) resulted in a rapid [Ca2+]cyt accumulation and decrease in mitochondrial membrane potential (ΔΨm) before the appearance of PCD. NO-induced PCD could be largely prevented not only by NO scavenger c-PTIO, but also by EGTA (Ca2+ chelator), LaCl3 (Ca2+-channel blocker) or CsA (a specific mitochondrial permeability transition pore inhibitor, which also inhibit Ca2+ cycling by mitochondria). All results suggested that NO-induced PCD is mediated through mitochondrial pathway and regulated by Ca2+.  相似文献   

5.
Polyethylene glycol (PEG) mediated transfection of Lactobacillus casei ATCC 27092 protoplasts by phage PL-1 DNA was done. The protoplasts were obtained by treatment with purified PL-1 phage N-acetylmuramidase in the presence of citrate. Optimum conditions for transfection were 50% PEG 4,000, 15 µg protamine sulfate/ml, 0.15 m sucrose, and 10 m m MgSO4 in MR medium (pH 6.0). The extent of transfection was proportional to the amounts of DNA added, and the greatest efficiency of transfection after a 10-min incubation was about 3.3 × 105 PFU/µg DNA. The eclipse period of growth of progeny phages in the transfectants was 3 hr and the average burst size was 200.  相似文献   

6.
Summary The mechanisms of Cl-channel activation in the plasmalemma ofNitellopsis obtusa was studied by measuring both the transient inward current under voltage clamp and Cl efflux during the action potential. 9-anthracenecarboxylic acid (A-9-C) at 1.0mm inhibited both the transient inward current and the Cl efflux, but did not uncouple the sudden cessation of the cytoplasmic streaming. Since this excitation-cessation coupling is caused by a transient increase in the cytoplasmic Ca2+ concentration, these results suggest that A-9-C inhibited not the Ca2+ channel but specifically the Cl channel. The following results were found between the Ca2+-channel activation and the Cl-channel activation: (1) The Ca2+-channel blocker La3+ uncoupled the excitation-cessation coupling and inhibited both the transient inward current and the Cl efflux, although the Cl-channel blocker A-9-C did not affect the excitation-cessation coupling. (2) The Cl efflux was greatly reduced by depletion of Ca2+ from the external solution and restored by an increase in the external Ca2+ concentration. (3) An increase in the external ionic, strength which increases Ca2+ entry (T. Shiina & M. Tazawa,J. Membrane Biol. 96:263–276, 1987) enhanced the Cl efflux. (4) Mg2+, which cannot pass through the Ca2+ channel, reduced both the transient inward current and the Cl efflux. (5) Although Sr2+ can pass through the plasmalemma Ca2+ channel, Cl-channel activation by Sr2+ was only partial. These findings support the hypothesis that voltage-dependent Ca2+-channel activation, which increases the free Ca2+ concentration in the cytoplasm, is necessary for the subsequent Cl-channel activation.  相似文献   

7.
Abe S  Takeda J 《Plant physiology》1986,81(4):1151-1155
Calmodulin antagonists, trifluoperazine, chlorpromazine, calmidazolium, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), strongly inhibited the electrofusion of barley (Hordeum vulgare L. cv Moor) protoplasts with a marked increase of broken fusion products, after 60 minutes of incubation. W-5, a dechlorinated analog of W-7, was found less effective for the inhibition than W-7. Ethyleneglycol-bis(β- aminoethylether)-N,N′-tetraacetic acid a Ca2+ chelator, La3+, a surface Ca2+ antagonist, and verapamil, a Ca2+ channel blocker, also inhibited electrofusion. Dielectrophoresis was inhibited by La3+. A microtubule inhibitor, vinblastine, inhibited electrofusion strongly while colchicine, slightly. A microfilament inhibitor, cytochalasin B, promoted fused cells to become spherical while phalloidin did not affect electrofusion.  相似文献   

8.
Takagi S  Nagai R 《Plant physiology》1988,88(1):228-232
In Vallisneria gigantea Graebner mesophyll cells, red light irradiation induces cytoplasmic streaming by decreasing the Ca2+ concentration in the cytoplasm, while far-red light irradiation inhibits it by increasing the concentration (S Takagi, R Nagai 1985 Plant Cell Physiol 26: 941-951). To examine the effects of light irradiation on Ca2+ fluxes across the cell membrane, protoplasts are isolated from the mesophyll cells. Changes in Ca2+ concentration in a solution bathing the protoplasts are monitored by spectrophotometry, using the Ca2+ -sensitive dye murexide. Red light irradiation induces an increase in Ca2+ concentration, which means an efflux of Ca2+ from the protoplasts. Subsequent far-red light irradiation produces a rapid decrease in Ca2+ concentration down to the dark control level; however, this is not observed in the presence of the Ca2+ -channel blocker nifedipine. Vanadate inhibits both the streaming and the Ca2+ efflux induced by red light irradiation. The results suggest that red light and far-red light control Ca2+ movements across the cell membrane, which in turn regulate the streaming.  相似文献   

9.
We have previously demonstrated mobilization of Ca2+ in the efflux of Rb+ (K+) from isolated hamster brown adipocytes as a consequence of norepinephrine stimulation. We have now investigated the adrenoceptor subtype specificity of these responses and found them both to be of theα1-subtype. Futher, we have found that the Rb+ (K+) effux was dependent upon a primary Ca2+mobilization event in response to the α1-adrenergic stimulation, since the Rb+ efflux could also be demonstrated by the addition ionophore A23187 to the cells. The norepinephrine- and A23187-stimulated Rb+ effluxes were both inhibited by the Ca2+-dependent K+ -channel blocker apamin. Apamin also significantly attenuated Ca2+ mobilization in cells in response to a submaximal concentration of norepinephrine. We conclude that α1-adrenergic stimulation of brown fat cells leads to a mobilization of intracellular Ca2+ which, in itself or via other mechanisms, leads to an increase in cytosolic Ca2+ concentration which, in turn, activates a Ca2+ -dependent K+ channel leading to a K+ release from these cells. A possible role for this channel to sustain and augment the response toα1-adrenergic stimulation is discussed.  相似文献   

10.
Many membrane-bound neurotransmitter receptors are known to be internalized by exposure to agonist. This agonist-induced receptor internalization is considered to play important roles in receptor-mediated signaling. Here we investigated the internalization of GAR-3, a Caenorhabditis elegans muscarinic acetylcholine receptor, using cultured mammalian cells. When Chinese hamster ovary cells stably expressing GAR-3 were treated with carbachol, GAR-3 was internalized in a dose- and time-dependent manner. Approximately 60% of the cell surface receptor was internalized by exposure to 1 mM carbachol for 1 h. Carbachol-induced GAR-3 internalization was suppressed by treatment with hypertonic sucrose, which blocks the formation of clathrin-coated pits. Overexpression of a dominant-negative dynamin mutant (DynK44A), but not of a dominant-negative β-arrestin mutant (Arr319–418), substantially inhibited carbachol-induced internalization of GAR-3. Thus, these data suggest that GAR-3 undergoes agonist-induced internalization via a clathrin- and dynamin-dependent but β-arrestin-independent pathway. Depletion of Ca2+ by simultaneous treatment of the cells with BAPTA/AM (Ca2+ mobilization blocker) and EGTA (Ca2+ influx blocker) almost completely blocked agonist-induced GAR-3 internalization. Moreover, treatment of the cells with the Ca2+ ionophore A23187 led to GAR-3 internalization in the absence of agonist. These results indicate that Ca2+ plays a critical role in GAR-3 internalization. We tested whether the third intracellular (i3) loop of GAR-3 is involved in agonist-stimulated receptor internalization. A GAR-3 deletion mutant lacking a large central portion of the i3 loop exhibited an internalization pattern comparable to that of the wild type, suggesting that the central i3 loop is not required for the internalization of GAR-3.  相似文献   

11.
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca2+ signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca2+ signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca2+ ([Ca2+]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca2+]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd3+, two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca2+-activated K+ channels but not chromanol 293B, a selective blocker of cAMP-activated K+ channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca2+]cyt, which was abolished in Ca2+-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca2+-dependent DBS, likely through the ROC, intermediate conductance Ca2+-activated K+ channels, and CFTR channels. This study not only reveals that [Ca2+]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca2+-induced DBS.  相似文献   

12.
Summary 1. The Ca2+-mediated regulation of interaction between FGF-1 and S100A13 in NG108-15 cells was studied. When the stress by depriving B27 supplement from the culture was given, cellular levels of both proteins were decreased, while their releases were significantly increased within 3 h. These stress-induced changes were all abolished by amlexanox, an anti-allergic drug.2. These releases were significantly inhibited by the addition of EGTA or BAPTA-AM, cellular or extracellular Ca2+-chelating agent, respectively. The addition of ω-conotoxin GVIA, a N-type Ca2+-channel blocker caused a complete inhibition of the release, while increased the cytosolic levels of both proteins. However, ω-conotoxin MVIIC, the non-N-type Ca2+-channel blocker was ineffective.3. In NG108-15 cells, which had been transfected with Venus-FGF-1 and CFP-S100A13, the supplement-deprivation stress caused several spike-type fluorescence resonance energy transfer (FRET) signals, suggesting that both proteins showing interaction would be immediately released. These spikes were completely abolished by the addition of ω-conotoxin GVIA. However, the addition of amlexanox caused bell-shaped FRET signals without spikes.4. Thus, it is suggested that the interaction between FGF-1 and S100A13 responsible for stress-induced non-vesicular release is dependent of Ca2+-influx through N-type Ca2+-channels.  相似文献   

13.
Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2+]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2+]i elevation was abolished in the absence of extracellular Ca2+ or in the presence of L-type Ca2+ channel blocker, nimodipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2+ channels and influx of extracellular Ca2+, and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.  相似文献   

14.
Recent evidences indicate the existence of an atypical D1 dopamine receptor other than traditional D1 dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase Cβ (PLCβ). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D1 dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca2+]i) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca2+]i. Application of D1 receptor, but not D2, α1 adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca2+]i rise, indicating that activation of the D1 dopamine receptor was essential for this response. Increase in [Ca2+]i was a two-step process characterized by an initial increase in [Ca2+]i mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca2+ entry. Furthermore, SKF83959-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D1 receptor by SKF83959 mediates a dose-dependent mobilization of [Ca2+]i via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.  相似文献   

15.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

16.
Summary Leishmania donovani, the etiological agent for the disease visceral leishmaniasis, attach themselves to the macrophages for initiation of the disease. The attachment process has been found to be regulated by Ca2+ ions. Verapamil, a Ca2+-channel blocker inhibits Leishmania-macrophage attachment. The inhibitory effect is increased with time. Nifedipine, another Ca2+-channel blocker exhibits the same effect. The attachment process is stimulated by Ca2+-ionophore alone. The inhibitory effects of the calcium channel blockers are reversed by the ionophore.  相似文献   

17.
Ion fluxes across the plasma membrane activated by 1 mM Ce4+, cell apoptosis and taxol biosynthesis in suspension cultures ofTaxus cuspidata were studied. The extracellular pH sharply decreased upon the addition of 1 mM Ce4+, then increased gradually and exceeded the initial pH value over a time period of 12 h. The extracellular Ca2+ concentration decreased within the first 3 h after the addition of Ce4+, then gradually decreased to one third of initial value in control at about 72 h and remained unchanged afterwards. Experiments with an ion channel blocker and a Ca2+-channel blocker indicated that the dynamic changes in extracellular pH and the Ca2+ concentration resulted from the Ce4+-induced activation of H+ uptake and Ca2+ influx across the plasma membranevia ion channels. A pretreatment of the ion channel blocker initiated Ce4+-treated cells to undergo necrosis, and the prior addition of the Ca2+-channel blocker inhibited Ce4+-induced taxol biosynthesis and apoptosis. It is thus inferred that H+ uptake is necessary for cells to survive a Ce4+-caused acidic environment and is one of the mechanisms of Ce4-induced apoptosis. Furthermore, the Ca2+ influx across the plasma membrane mediated both the Ce4+-induced apoptosis and taxol biosynthesis.  相似文献   

18.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

19.
Summary Salivary electrolyte secretion is under the control of the autonomic nervous system. In this paper we report that HSY, an epithelial cell line derived from the acinar-intercalated duct region of the human parotid gland, responds to muscarinic-cholinergic (generation of Ca2+ signal) andβ-adrenergic (generation of cAMP signal), but not toα-adrenergic (lack of Ca2+ signal), receptor stimulation. The muscarinic response was studied in detail. Carbachol (10−4 M, muscarinic agonist) or A23187 (5 μM, calcium ionophore) stimulation of HSY cells increases both86Rb (K+) influx and efflux, resulting in no change in net equilibrium86Rb content. Atropine (10−5 M, muscarinic antagonist) blocks both the carbachol-generated Ca2+ signal and carbachol-stimulated86Rb fluxes, but has no effect on either the A23187-generated Ca2+ signal or A23187-stimulated86Rb fluxes. Carbachol- and A23187-stimulated86Rb fluxes are substantially inhibited by two K+ channel blockers, quinine (0.3 mM) and scorpion venom containing charybdotoxin (33 μg/ml). The inhibition of these stimulated fluxes by another K+ channel blocker, tetraethylammonium chloride (5 mM), is less pronounced. Protein kinase C (PKC) seems to be involved in the regulation of the86Rb fluxes as 10−7 M PMA (phorbol ester, phorbol-12-myristate-13-acetate) substantially inhibits the muscarinic-stimulated86Rb efflux and influx. Because this concentration of PMA totally inhibits the carbachol-generated Ca2+ signal and only 80% of the muscarinic-stimulated86Rb influx, it seems that a portion of the carbachol-stimulated86Rb flux (i.e. that portion not inhibited by PMA) might occur independently of the Ca2+ signal. PMA fails to inhibit the A23187-stimulated86Rb fluxes, however, suggesting that PKC regulates Ca2+-sensitive K+ channel activity by regulating the Ca2+ signal, and not steps distal to this event. 4-α-Phorbol-12,13-didecanoate, a phorbol ester which fails to activate PKC, fails to inhibit either the carbachol-stimulated increase in intracellular free Ca2+, or carbachol-stimulated86Rb fluxes.  相似文献   

20.
Pathways of signal transduction of red and blue light-dependentacidification by leaf epidermal cells were studied using epidermalstrips of the Argenteum mutant of Pisum sativum. In these preparationsthe contribution of guard cells to the acidification is minimal.The hydroxypyridine nifedipine, a Ca2+-channel blocker, partlyinhibited the response to both blue and red light, while thephenylalkylamine, verapamil, a Ca2+-channel blocker that hasbeen shown in plant cells also to block K+-channels, causednearly complete inhibition. The Ca2+-channel activator S(–)BayK 8644 induced acidification when added in the dark and diminishedthe light-induced lowering of the extracellular pH. The Ca2+-ionophores,ionomycin and A23187 [GenBank] , also reduced the light response. Furthermore,the light-induced acidification was inhibited by the calmodulinantagonists W-7 and trifluoperazine, but not by W-5. These calmodulininhibitors completely inhibited the red light-induced acidification,but inhibited the response to blue light by only 60–70%.In general, inhibition by compounds affecting Ca-calmodulinsignalling was always stronger on the red light response thanthat on the blue light response (with the exception of verapamilthat blocked both the red and blue light responses equally well).This differential effect on red and blue light-induced responsesindicates a role for Ca2+-CaM signalling in both the red andblue light responses, while a second process, independent ofCa2+ is activated by blue light. Key words: Signal transduction, light-induced acidification, epidermal cells, pea  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号