首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yanagihara S  Hessler NA 《PloS one》2011,6(10):e25879
Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.  相似文献   

2.
3.
Shmuelof L  Krakauer JW 《Neuron》2011,72(3):469-476
Here we argue that general principles with regard to the contributions of the cerebellum, basal ganglia, and primary motor cortex to motor learning can begin to be inferred from explicit comparison across model systems and consideration of phylogeny. Both the cerebellum and the basal ganglia have highly conserved circuit architecture in vertebrates. The cerebellum has consistently been shown to be necessary for adaptation of eye and limb movements. The precise contribution of the basal ganglia to motor learning remains unclear but one consistent finding is that they are necessary for early acquisition of novel sequential actions. The primary motor cortex allows independent control of joints and construction of new movement synergies. We suggest that this capacity of the motor cortex implies that it is a necessary locus for motor skill learning, which we argue is the ability to execute selected actions with increasing speed and precision.  相似文献   

4.
鸣禽鸣唱与人类说话一样,都是在教习和听觉反馈下形成的感知运动学习过程。鸣禽鸣唱的发育和成熟巩固依赖于发声通路和前端脑通路组成的鸣唱系统的完整。前端脑通路中的X区在鸣唱学习记忆中扮演着重要角色。本文就X区的形态组织结构、在鸣唱发育与成熟巩固中的作用、突触可塑性的研究进展进行了综述,并且将X区与哺乳动物基底神经节的学习记忆功能做了比较。  相似文献   

5.
Songbirds are one of the best-studied examples of vocal learners. Learning of both human speech and birdsong depends on hearing. Once learned, adult song in many species remains unchanging, suggesting a reduced influence of sensory experience. Recent studies have revealed, however, that adult song is not always stable, extending our understanding of the mechanisms involved in song maintenance, and their similarity to those active during song learning. Here we review some of the processes that contribute to song learning and production, with an emphasis on the role of auditory feedback. We then consider some of the possible neural substrates involved in these processes, particularly basal ganglia circuitry. Although a thorough treatment of human speech is beyond the scope of this article, we point out similarities between speech and song learning, and ways in which studies of these disparate behaviours complement each other in developing an understanding of general principles that contribute to learning and maintenance of vocal behaviour.  相似文献   

6.
7.
Basal ganglia--possible role in motor coordination and learning.   总被引:3,自引:0,他引:3  
The basal ganglia, with their inhibitory efferents, control motor outputs either directly by their projections to the midbrain motor regions or indirectly through the thalamic nuclei. Neural mechanisms in the basal ganglia act selectively to remove or enhance the inhibition so that different combinations of motor signals, which may act as neural templates for motor learning, are formed.  相似文献   

8.
Vocal imitation in human infants and in some orders of birds relies on auditory-guided motor learning during a sensitive period of development. It proceeds from 'babbling' (in humans) and 'subsong' (in birds) through distinct phases towards the full-fledged communication system. Language development and birdsong learning have parallels at the behavioural, neural and genetic levels. Different orders of birds have evolved networks of brain regions for song learning and production that have a surprisingly similar gross anatomy, with analogies to human cortical regions and basal ganglia. Comparisons between different songbird species and humans point towards both general and species-specific principles of vocal learning and have identified common neural and molecular substrates, including the forkhead box P2 (FOXP2) gene.  相似文献   

9.
Rose M  Haider H  Weiller C  Büchel C 《Neuron》2002,36(6):1221-1231
The medial temporal lobe (MTL) has been associated with declarative learning of flexible relational rules and the basal ganglia with implicit learning of stimulus-response mappings. It remains an open question of whether MTL or basal ganglia are involved when learning flexible relational contingencies without awareness. We studied learning of an explicit stimulus-response association with fMRI. Embedded in this explicit task was a hidden structure that was learnt implicitly. Implicit learning of the sequential regularities of the "hidden rule" activated the ventral perirhinal cortex, within the MTL, whereas learning the fixed stimulus-response associations activated the basal ganglia, indicating that the function of the MTL and the basal ganglia depends on the learned material and not necessarily on the participants' awareness.  相似文献   

10.
Person AL  Perkel DJ 《Neuron》2005,46(1):129-140
Song learning in birds requires a basal ganglia-thalamo-pallial loop that contains a calyceal GABAergic synapse in the thalamus. Information processing within this circuit is critical for proper song development; however, it is unclear whether activation of the inhibitory output of the basal ganglia structure Area X can drive sustained activity in its thalamic target, the medial portion of the dorsolateral thalamic nucleus (DLM). We show that high-frequency, random activation of this GABAergic synapse can drive precisely timed firing in DLM neurons in brain slices in the absence of excitatory input. Complex IPSP trains, including spike trains recorded in vivo, drive spiking in slices with high reproducibility, even between animals. Using a simple model, we can predict much of DLM's response to natural stimulus trains. These data elucidate basic rules by which thalamic relay neurons translate IPSPs into suprathreshold output and demonstrate extrathalamic GABAergic activation of thalamus.  相似文献   

11.
The classical notion that the basal ganglia and the cerebellum are dedicated to motor control has been challenged by the accumulation of evidence revealing their involvement in non-motor, cognitive functions. From a computational viewpoint, it has been suggested that the cerebellum, the basal ganglia, and the cerebral cortex are specialized for different types of learning: namely, supervised learning, reinforcement learning and unsupervised learning, respectively. This idea of learning-oriented specialization is helpful in understanding the complementary roles of the basal ganglia and the cerebellum in motor control and cognitive functions.  相似文献   

12.
In several songbird species, a specialized anterior forebrain pathway (AFP) that includes part of the avian basal ganglia has been implicated specifically in song learning. To further elucidate cellular mechanisms and circuitry involved in vocal learning, we used quantitative immunoblot analysis to determine if early song tutoring promotes within the AFP phosphorylation of calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional kinase whose phosphorylation at threonine 286 is critical for many forms of neural plasticity and behavioral learning. We report that in young male zebra finches likely to have begun the process of song acquisition, brief tutoring by a familiar conspecific adult promotes a dramatic increase in levels of phosphorylated CaMKII (pCaMKII) in Area X, the striatal/pallidal component of the AFP. In contrast, pCaMKII levels in this region were not elevated if 1) the tutor did not sing, 2) the tutor sang but was visually isolated from the pupil, or 3) the tutor was an unfamiliar adult. In young males that had not previously heard any conspecific song, first exposure to a song tutor produced a more modest, but significant rise in pCaMKII levels. Young females (who do not develop song behavior) did not exhibit any effect of tutoring on pCaMKII levels in that portion of the basal ganglia that corresponds to Area X in males. These data are consistent with the hypothesis that Area X participates in encoding and/or attaching reward value to a representation of tutor song that is accessed later to guide motor learning.  相似文献   

13.
Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult “tutors”, and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.  相似文献   

14.
FoxP2 mutations in humans are associated with a disorder that affects both the comprehension of language and its production, speech. This discovery provided the first opportunity to analyze the genetics of language with molecular and neurobiological tools. The amino acid sequence and the neural expression pattern of FoxP2 are extremely conserved, from reptile to man. This suggests an important role for FoxP2 in vertebrate brains, regardless of whether they support imitative vocal learning or not. Its expression pattern pinpoints neural circuits that might have been crucial for the evolution of speech and language, including the basal ganglia and the cerebellum. Recent studies in songbirds show that during times of song plasticity FoxP2 is upregulated in a striatal region essential for song learning. This suggests that FoxP2 plays important roles both in the development of neural circuits and in the postnatal behaviors they mediate.  相似文献   

15.
The levels of CB1 cannabinoid receptors in the basal ganglia are the highest in the brain, comparable to the levels of dopamine receptors, a major transmitter in the basal ganglia. This localization of receptors is consistent with the profound effects on motor function exerted by cannabinoids. The output nuclei of the basal ganglia, the globus pallidus (GP) and substantia nigra reticulata (SNr), apparently lack intrinsic cannabinoid receptors. Rather, the receptors are located on afferent terminals, the striatum being the major source. Cannabinoids blocked the inhibitory action of the striatal input in the SNr. Furthermore, cannabinoids blocked the excitatory effect of stimulation of the subthalamic input to the SNr revealing, along with data from in situ hybridization studies, that this input is another likely source of cannabinoid receptors to the SNr. Similar actions of cannabinoids were observed in the GP. Behavioral studies further revealed that the action of cannabinoids differs depending upon which input to the output nuclei of the basal ganglia is active. The inhibitory striatal input is quiescent and the cannabinoid action is observable only upon stimulation of the striatum, while the noticeable effect of cannabinoids under basal conditions would be on the tonically active subthalamic input. These data suggest that the recently discovered endogenous cannabinergic system exerts a major modulatory action in the basal ganglia by its ability to block both the major excitatory and inhibitory inputs to the SNr and GP.  相似文献   

16.

Background

Trial by trial variability during motor learning is a feature encoded by the basal ganglia of both humans and songbirds, and is important for reinforcement of optimal motor patterns, including those that produce speech and birdsong. Given the many parallels between these behaviors, songbirds provide a useful model to investigate neural mechanisms underlying vocal learning. In juvenile and adult male zebra finches, endogenous levels of FoxP2, a molecule critical for language, decrease two hours after morning song onset within area X, part of the basal ganglia-forebrain pathway dedicated to song. In juveniles, experimental ‘knockdown’ of area X FoxP2 results in abnormally variable song in adulthood. These findings motivated our hypothesis that low FoxP2 levels increase vocal variability, enabling vocal motor exploration in normal birds.

Methodology/Principal Findings

After two hours in either singing or non-singing conditions (previously shown to produce differential area X FoxP2 levels), phonological and sequential features of the subsequent songs were compared across conditions in the same bird. In line with our prediction, analysis of songs sung by 75 day (75d) birds revealed that syllable structure was more variable and sequence stereotypy was reduced following two hours of continuous practice compared to these features following two hours of non-singing. Similar trends in song were observed in these birds at 65d, despite higher overall within-condition variability at this age.

Conclusions/Significance

Together with previous work, these findings point to the importance of behaviorally-driven acute periods during song learning that allow for both refinement and reinforcement of motor patterns. Future work is aimed at testing the observation that not only does vocal practice influence expression of molecular networks, but that these networks then influence subsequent variability in these skills.  相似文献   

17.
Recently, two quite different approaches exemplifying 'bottom-up' and 'top-down' philosophies have shed new light on basal ganglia function. In vitro work using organotypic co-cultures has implicated the subthalamic nucleus (STN) and the external segment of the globus pallidus (GP(e)) as pacemakers for low-frequency bursting that is reminiscent of the activity produced in Parkinsonian tremor. A circuit essential for avian song learning has been identified as part of the basal ganglia with surprisingly well conserved cellular details; investigation of this system may help to address general issues of basal ganglia function.  相似文献   

18.
The anthropomorphic intelligence of autonomous driving has been a research hotspot in the world.However,current stud-ies have not been able to reveal the mechanism of drivers'natural driving behaviors.Therefore,this thesis starts from the perspective of cognitive decision-making in the human brain,which is inspired by the regulation of dopamine feedback in the basal ganglia,and a reinforcement learning model is established to solve the brain-like intelligent decision-making problems in the process of interacting with the environment.In this thesis,first,a detailed bionic mechanism architecture based on basal ganglia was proposed by the consideration and analysis of its feedback regulation mechanism;second,the above mechanism was transformed into a reinforcement Q-learning model,so as to implement the learning and adaptation abilities of an intelligent vehicle for brain-like intelligent decision-making during car-following;finally,the feasibility and effectiveness of the proposed method were verified by the simulations and real vehicle tests.  相似文献   

19.
20.
After more than a century of work concentrating on the motor functions of the basal ganglia, new ideas have emerged, suggesting that the basal ganglia also have major functions in relation to learning habits and acquiring motor skills. We review the evidence supporting the role of the striatum in optimizing behavior by refining action selection and in shaping habits and skills as a modulator of motor repertoires. These findings challenge the notion that striatal learning processes are limited to the motor domain. The learning mechanisms supported by striatal circuitry generalize to other domains, including cognitive skills and emotion-related patterns of action.The nuclei and interconnections of the basal ganglia are widely recognized for modulating motor behavior. Whether measured at the neuronal or regional level, the activities of neurons in the basal ganglia correlate with many movement parameters, particularly those that influence the vigor of an action, such as force and velocity. Pathology within different basal ganglia circuits predictably leads to either hypokinetic or hyperkinetic movement disorders. In parallel, however, the basal ganglia, and especially the striatum, are now widely recognized as being engaged in activity related to learning. Interactions between the dopamine-containing neurons of the midbrain and their targets in the striatum are critical to this function. A fundamental question is how these two capacities—(motor behavior and reinforcement-based learning)—relate to each other and what role the striatum and other basal ganglia nuclei have in forming new behavioral repertoires. Here, we consider relevant physiological properties of the striatum by contrasting two common forms of adaptation found in all mammals: the acquisition of behavioral habits and physical skills.Without resorting to technical definitions, we all have an intuition of what habits and skills are. Tying one’s shoes after putting them on is something we consider a habit—part of a behavioral routine. The capacity to tie the laces properly is a skill. Habits and skills have many common features. Habits are consistent behaviors triggered by appropriate events (typically, but not always, external stimuli) occurring within particular contexts. Physical skills are changes in a physical repertoire: new combinations of movements that lead to new capacities for goal-directed action. Both habits and skills can leverage reward-based learning, particularly during their initial acquisition. In either instance, after sufficient experience, the need for reward becomes lower and lower. With sufficient practice, both lead to “automaticity” and a resilience against competing actions that might lead to unlearning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号