首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
2.
Insulin regulates glucose homeostasis by binding and activating the insulin receptor, and defects in insulin responses (insulin resistance) induce type 2 diabetes. SH2-B, an Src homology 2 (SH2) and pleckstrin homology domain-containing adaptor protein, binds via its SH2 domain to insulin receptor in response to insulin; however, its physiological role remains unclear. Here we show that SH2-B was expressed in the liver, skeletal muscle, and fat. Systemic deletion of SH2-B impaired insulin receptor activation and signaling in the liver, skeletal muscle, and fat, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and IRS2 and activation of the phosphatidylinositol 3-kinase/Akt and the Erk1/2 pathways. Consequently, SH2-B-/- knockout mice developed age-dependent hyperinsulinemia, hyperglycemia, and glucose intolerance. Moreover, SH2-B directly enhanced autophosphorylation of insulin receptor and tyrosine phosphorylation of IRS1 and IRS2 in an SH2 domain-dependent manner in cultured cells. Our data suggest that SH2-B is a physiological enhancer of insulin receptor activation and is required for maintaining normal insulin sensitivity and glucose homeostasis during aging.  相似文献   

3.
4.
To explore the limitations of the liver-specific IGF-I gene-deficient (LID) model and to further evaluate the role of endocrine IGF-I in early postnatal life and old age, we have studied these mice during the prepubertal period (from birth to 3 wk of age) and when they are 2 yr old. During the first 2 wk of life, IGF-I gene deficiency and the resulting reduction in serum IGF-I levels in LID mice did not reach sufficiently low levels when mice experience the most rapid and growth hormone (GH)-independent growth. It suggests that the role of liver-derived IGF-I in prepubertal, GH-independent postnatal growth cannot be established. From our previous studies, liver IGF-I mRNA level was abolished in adult LID mice, which causes elevated GH level, insulin resistance, pancreatic islet enlargement, and hyperinsulinemia. Interestingly in 2-yr-old LID mice, although liver IGF-I mRNA and serum IGF-I levels were still suppressed, serum insulin and GH levels had returned to normal. Compared with same-sex control littermates, aged male LID mice had significantly reduced body weight and fat mass and exhibited normal insulin sensitivity. On the other hand, aged female LID mice exhibited normal weight and marginal resistance to insulin actions. The pancreatic islet percentage (reflecting islet cell mass) was also restored to normal levels in aged LID mice. Thus, although the IGF-I gene deficiency is well maintained into old age, the insulin sensitivity, islet enlargement, and hyperinsulinemia that occurred in young adult mice have been mostly restored to normal levels, further supporting the age-dependent and sexual dimorphic features of the LID mice.  相似文献   

5.
Growth hormone (GH), acting through its receptor (GHR), is essential for somatic growth and development and maintaining metabolic homeostasis. GHR gene-deficient (GHR(-/-)) mice exhibit drastically diminished insulin-like growth factor-I (IGF-I) levels, proportional growth retardation, elevated insulin sensitivity, and reduced islet beta-cell mass. Unlike the liver, which is mostly unaffected by changes in IGF-I level, skeletal muscles express high levels of IGF-I receptor (IGF-IR). The net result of a concurrent deficiency in the actions of both GH and IGF-I, which exert opposite influences on insulin responsiveness, has not been evaluated. We studied insulin-stimulated early responses in the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and p85 subunit of phosphatidylinositol 3-kinase. Upon in vivo insulin stimulation, skeletal muscles of GHR(-/-) mice exhibit transient delayed responses in IR and IRS-1 phosphorylation but normal levels of p85 association with IRS-1. This is in contrast to normal/elevated insulin responses in hepatocytes and indicates tissue-specific effects of GHR gene deficiency. In addition to stimulating normal islet cell growth, GH may participate in islet cell overgrowth, which compensates for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of male GHR(-/-) mice to high-fat diet (HFD)-induced obesity. After 17 wk on a HFD, GHR(-/-) mice became more significantly obese than wild-type mice and exhibited increased beta-cell mass to a slightly higher extent. These data demonstrate that GH signaling is not required for compensatory islet growth. Thus, in both muscle insulin responsiveness and islet growth compensation, normal levels of GH signals do not seem to play a dominant role.  相似文献   

6.
The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the activation loop of the IR kinase and is one of only two signaling molecules shown to interact directly with this residue of the insulin receptor kinase domain. The intron/exon structure of the SH2-B gene was determined. Alternate splice sites utilized to generate the different isoforms of the SH2-B protein were identified in the 3′ end of the SH2-B gene immediately downstream of the exon encoding the core of the SH2 domain. Additionally, the chromosomal location of the SH2-B gene was determined to be the distal arm of mouse Chromosome (Chr) 7 in a region linked to obesity in mice. Received: 13 May 1999 / Accepted: 13 August 1999  相似文献   

7.
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.  相似文献   

8.
Src-homology-2 (SH2)-B, a Janus tyrosine kinase 2-interacting protein, has been identified recently as a key regulator of leptin and insulin sensitivity, glucose homeostasis, and body weight in mice. The aim of this study was to determine whether single-nucleotide polymorphisms (SNPs) in the human SH2B gene are associated with these variables. A tagging SNP (tSNP), Ala484Thr (rs7498665), was selected to represent five common SNPs (minor allele frequency > 0.05) in perfect linkage disequilibrium in a 16-kb region encompassing the SH2B gene. The tSNP was genotyped in 2455 white female twins (mean age, 47.4 +/- 12.6 years) from the St. Thomas' United Kingdom Adult Twin Registry (Twins United Kingdom). Ala484Thr (minor allele frequency, 0.38) was associated with serum leptin, total fat, waist circumference, and body weight (P = 0.02 to 0.04). The coding SNP has no predicted effect on protein structure or function and is likely to be in linkage disequilibrium with an as-yet unidentified functional variant in the SH2B gene. Our results support a role for SH2-B in modulating the regulation of body weight and fat by leptin in this female population. If SH2-B signaling is attenuated in diet-induced obesity, it could become a target for drug-induced leptin sensitization.  相似文献   

9.
Lnk, SH2-B, and APS form a conserved adaptor protein family. All of those proteins are expressed in mast cells and their possible functions in signaling through c-Kit or FcRI have been speculated. To investigate roles of Lnk, SH2-B or APS in mast cells, we established IL-3-dependent mast cells from Ink-/-, SH2-B-/-, and APS -/- mice. IL-3-dependent growth of those cells was comparable. Proliferation or adhesion mediated by c-Kit as well as degranulation induced by cross-linking FcRI were normal in the absence of Lnk or SH2-B. In contrast, APS-deficient mast cells showed augmented degranulation after cross-linking FcRI compared to wild-type cells, while c-Kit-mediated proliferation and adhesion were kept unaffected. APS-deficient mast cells showed reduced actin assembly at steady state, although their various intracellular responses induced by cross-linking FcRI were indistinguishable compared to wild-type cells. Our results suggest potential roles of APS in controlling actin cytoskeleton and magnitude of degranulation in mast cells.  相似文献   

10.
Ren D  Li M  Duan C  Rui L 《Cell metabolism》2005,2(2):95-104
Leptin regulates energy balance and body weight by activating its receptor LEPRb and multiple downstream signaling pathways, including the STAT3 and the IRS2/PI 3-kinase pathways, in the hypothalamus. Leptin stimulates activation of LEPRb-associated JAK2, which initiates cell signaling. Here we identified SH2-B, a JAK2-interacting protein, as a key regulator of leptin sensitivity, energy balance, and body weight. SH2-B homozygous null mice were severely hyperphagic and obese and developed a metabolic syndrome characterized by hyperleptinemia, hyperinsulinemia, hyperlipidemia, hepatic steatosis, and hyperglycemia. The expression of hypothalamic orexigenic NPY and AgRP was increased in SH2-B(-/-) mice. Leptin-stimulated activation of hypothalamic JAK2 and phosphorylation of hypothalamic STAT3 and IRS2 were significantly impaired in SH2-B(-/-) mice. Moreover, overexpression of SH2-B counteracted PTP1B-mediated inhibition of leptin signaling in cultured cells. Our data suggest that SH2-B is an endogenous enhancer of leptin sensitivity and required for maintaining normal energy metabolism and body weight in mice.  相似文献   

11.
Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.  相似文献   

12.
p190-B RhoGAP regulates mammary ductal morphogenesis   总被引:1,自引:0,他引:1  
Previous studies from our laboratory have demonstrated that p190-B RhoGAP (p190-B) is differentially expressed in the Cap cells of terminal end buds (TEBs) and poorly differentiated rodent mammary tumors. Based on these observations we hypothesized that p190-B might play an essential role in invasion of the TEBs into the surrounding fat pad during ductal morphogenesis. To test this hypothesis, mammary development was studied in p190-B-deficient mice. A haploinsufficiency phenotype was observed in p190-B heterozygous mice as indicated by decreased number and rate of ductal outgrowth(s) at 3, 4, and 5 wk of age when compared with their wild-type littermates. This appeared to result from decreased proliferation in the Cap cells of the TEBs, a phenotype remarkably similar to that observed previously in IGF-I receptor null mammary epithelium. Furthermore, decreased expression of insulin receptor substrates 1 and 2 were observed in TEBs of p190-B heterozygous mice. These findings are consistent with decreased IGF signaling observed previously in p190-B-/- mouse embryo fibroblasts. To further assess if this defect was cell autonomous or due to systemic endocrine effects, the mammary anlagen from p190-B+/+, p190-B+/-, and p190-B-/- mice was rescued by transplantation into the cleared fat pad of recipient Rag1-/- mice. Surprisingly, as opposed to 75-80% outgrowths observed using wild-type donor epithelium, only 40% of the heterozygous and none of the p190-B-/- epithelial transplants displayed any outgrowths. Together, these results suggest that p190-B regulates ductal morphogenesis, at least in part, by modulating the IGF signaling axis.  相似文献   

13.
The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.  相似文献   

14.
Activation of JAK tyrosine kinases is an essential step in cell signaling by multiple hormones, cytokines, and growth factors, including growth hormone (GH) and interferon-gamma. Previously, we identified SH2-B beta as a potent activator of JAK2 (Rui, L., and Carter-Su, C. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 7172-7177). Here, we investigated whether the activation of JAK2 by SH2-B beta is specific to JAK2 and SH2-B beta or extends to other JAKs or other members of the SH2-B beta family. When SH2-B beta was overexpressed with JAK1 or JAK3, SH2-B beta failed to increase their activity. However, SH2-B beta bound to both and was tyrosyl-phosphorylated by JAK1. In contrast to SH2-B beta, APS decreased tyrosyl phosphorylation of GH-stimulated JAK2 as well as Stat5B, a substrate of JAK2. APS also decreased tyrosyl phosphorylation of JAK1, but did not affect the activity or tyrosyl phosphorylation of JAK3. Overexpressed APS bound to and was tyrosyl-phosphorylated by all three JAKs. Consistent with these data, in 3T3-F442A adipocytes, endogenous APS was tyrosyl-phosphorylated in response to GH and interferon-gamma. These results suggest that 1) SH2-B beta specifically activates JAK2, 2) APS negatively regulates both JAK2 and JAK1, and 3) both SH2-B beta and APS may serve as adapter proteins for all three JAKs independent of any role they have in JAK activity.  相似文献   

15.
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.  相似文献   

16.
Insulin receptor substrates (IRS-1 and IRS-2) are essential for intracellular signaling by insulin and insulin-like growth factor-I (IGF-I), anabolic regulators of bone metabolism. Although mice lacking the IRS-2 gene (IRS-2-/- mice) developed normally, they exhibited osteopenia with decreased bone formation and increased bone resorption. Cultured IRS-2-/- osteoblasts showed reduced differentiation and matrix synthesis compared with wild-type osteoblasts. However, they showed increased receptor activator of nuclear factor kappaB ligand (RANKL) expression and osteoclastogenesis in the coculture with bone marrow cells, which were restored by reintroduction of IRS-2 using an adenovirus vector. Although IRS-2 was expressed and phosphorylated by insulin and IGF-I in both osteoblasts and osteoclastic cells, cultures in the absence of osteoblasts revealed that intrinsic IRS-2 signaling in osteoclastic cells was not important for their differentiation, function, or survival. It is concluded that IRS-2 deficiency in osteoblasts causes osteopenia through impaired anabolic function and enhanced supporting ability of osteoclastogenesis. We propose that IRS-2 is needed to maintain the predominance of bone formation over bone resorption, whereas IRS-1 maintains bone turnover, as we previously reported; the integration of these two signalings causes a potent bone anabolic action by insulin and IGF-I.  相似文献   

17.
Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 +/- 0.22 and 5.22 +/- 0.39 vs. 3.99 +/- 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 +/- 65 and 1,910 +/- 115 vs. 1,590 +/- 67 mmol. l(-1). min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-alpha, or peroxisome proliferator-activated receptor-gamma mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.  相似文献   

18.
Grb10 has been described as a cellular partner of several receptor tyrosine kinases, including the insulin receptor (IR) and the insulin-like growth factor I (IGF-I) receptor (IGF-IR). Its cellular role is still unclear and a positive as well as an inhibitory role in mitogenesis depending on the cell context has been implicated. We have tested other mitogenic receptor tyrosine kinases as putative Grb10 partners and have identified the activated forms of platelet-derived growth factor (PDGF) receptor beta (PDGFRbeta), hepatocyte growth factor receptor (Met), and fibroblast growth factor receptor as candidates. We have mapped Y771 as a PDFGRbeta site that is involved in the association with Grb10 via its SH2 domain. We have further investigated the putative role of Grb10 in mitogenesis with four independent experimental strategies and found that all consistently suggested a role as a positive, stimulatory signaling adaptor in normal fibroblasts. (i) Complete Grb10 expression from cDNA with an ecdysone-regulated transient expression system stimulated PDGF-BB-, IGF-I, and insulin- but not epidermal growth factor (EGF)-induced DNA synthesis in an ecdysone dose-responsive fashion. (ii) Microinjection of the (dominant-negative) Grb10 SH2 domain interfered with PDGF-BB- and insulin-induced DNA synthesis. (iii) Alternative experiments were based on cell-permeable fusion peptides with the Drosophila antennapedia homeodomain which effectively traverse the plasma membrane of cultured cells. A cell-permeable Grb10 SH2 domain similarly interfered with PDGF-BB-, IGF-I-, and insulin-induced DNA synthesis. In contrast, a cell-permeable Grb10 Pro-rich putative SH3 domain binding region interfered with IGF-I- and insulin- but not with PDGF-BB- or EGF-induced DNA synthesis. (iv) Transient overexpression of complete Grb10 increased whereas cell-permeable Grb10 SH2 domain fusion peptides substantially decreased the cell proliferation rate (as measured by cell numbers) in normal fibroblasts. These experimental strategies independently suggest that Grb10 functions as a positive, stimulatory, mitogenic signaling adapter in PDGF-BB, IGF-I, and insulin action. This function appears to involve the Grb10 SH2 domain, a novel sequence termed BPS, and the Pro-rich putative SH3 domain binding region in IGF-I- and insulin-mediated mitogenesis. In contrast, PDGF-BB-mediated mitogenesis appears to depend on the SH2 but not on the Pro-rich region and may involve other, unidentified Grb10 domains. Distinct protein domains may help to define specific Grb10 functions in different signaling pathways.  相似文献   

19.
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.  相似文献   

20.
Obesity plays a pivotal role in the pathophysiology of metabolic and cardiovascular diseases. Resistance to insulin is commonly seen in metabolic disorders such as obesity and diabetes. Insulin-like growth factor-I (IGF-I) mimics insulin in many tissues and has been shown to enhance cardiac contractile function and growth. Because IGF-I resistance often accompanies resistance to insulin, we sought to determine whether IGF-I-induced myocardial contractile was elevated and whether heart and kidney size were enlarged in obese compared with lean rats. The myocyte contraction profile in the obese rats showed a decreased peak shortening associated with prolonged relengthening and normal shortening duration, a pattern similar to that observed in diabetes. IGF-I (1-500 ng/ml) caused a dose-dependent increase in peak shortening in lean but not obese animals, but it did not alter the duration of shortening and relengthening. Consistent with contractile data, IGF-I induced a dose-dependent increase in Ca(2+) transients only in myocytes of lean rats. IGF-I receptor mRNA levels were significantly reduced in obese rat hearts. These results suggest that the IGF-I-induced cardiac contractile responses are attenuated in the Zucker model of obesity. The mechanisms underlying this alteration may be related to the decreased receptor number and/or changes in intracellular Ca(2+) handling in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号