首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Our objective was to evaluate the influence of distinct macroecological factors (space, floristics and environment) on the variation in seed dispersal strategies of shrubs and trees in the Araucaria forest biome in the southern and south‐eastern Brazilian highlands. We hypothesize that history‐related factors (space, floristics) are major determinants of the proportion of endo‐ and syn‐zoochorous species in Araucaria forests, despite the current gradients in environmental conditions. Location Araucaria forest is the main forest biome in southern Brazil, at altitudes above 500 m a.s.l. (latitude ≤ 30° S). Their northern limit in Brazil is at latitude 20° S, where forests occur at elevations above 1000 m a.s.l. Methods We compiled information from 27 floristic checklists comprising shrub and tree species distributed along the geographical range of the Brazilian Araucaria forest biome. We classified species as zoochorous and non‐zoochorous, based on morphological attributes of their diaspores. Sites were described by geographical coordinates (latitude, longitude) and five environmental variables. We evaluated separately the influence of floristic, spatial and environmental variables on zoochory using correspondence analysis and linear regressions. Further, we evaluated causal connections between these variable groups using Mantel tests and path analysis. Results Zoochory increased with both latitude and longitude. Regression analysis showed that rainfall seasonality was the only environmental variable explaining the variation in the proportion of zoochorous species. All pairwise Mantel correlations between space, rainfall seasonality, floristics and zoochory were significant. Path analysis showed that rainfall seasonality was strongly determined by spatial distances between sites, and floristics was directly determined by rainfall seasonality. Further zoochory was mostly determined by floristics. Main conclusions Taking into account historical factors in the interpretation of macroecological patterns improves our understanding of biodiversity gradients. Hypotheses based on long‐term dynamics of distinct floristic groups provide some useful insights into patterns shown by studies elsewhere. Here we offer an analytical solution to incorporate history‐related factors into macroecological analyses. While history‐based hypotheses do not replace any other ideas concerning macroecological patterns, they are likely to improve our understanding on factors determining present‐day ecological patterns.  相似文献   

2.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

3.
胡植  王焕炯  戴君虎  葛全胜 《生态学报》2021,41(23):9119-9129
物候是植物在长期适应环境过程中形成的生长发育节点。长时间地面物候观测数据表明,近50年全球乔木、灌木、草本植物的春季物候期受温度升高、降水与辐射变化等影响,以每10年2 d到10 d的速率提前。但因植物物候响应气候因子的机制仍不清楚,导致对未来气候变化情景下的植物物候变化预测存在较大的不确定性。在此背景下,控制实验成为探究气候因子对植物物候影响机制的重要手段。综述了物候控制实验中不同气候因子(温度、水分、光照等)的控制方法。总结了目前为止控制实验在植物物候对气候因子响应方面得到的重要结论,发现植物春季物候期(展叶、开花等)主要受冷激、驱动温度与光周期的影响,秋季物候期(叶变色和落叶)主要受低温、短日照与水分胁迫的影响。提出未来物候控制实验应重点解决木本植物在秋季进入休眠的时间点确定、低温和短日照对木本植物秋季物候的交互作用量化、草本植物春秋季物候的影响因子识别等科学问题。  相似文献   

4.
植物的开花物候受气候因素、植物系统发育关系和功能性状的影响。然而当前植物开花物候研究中未见同时考虑这3个因素的报道。为了解它们相互之间的影响, 本研究利用中国东部地区浙江省古田山国家级自然保护区亚热带常绿阔叶林24 ha大样地(GTS; 118°03′50′′-118°11′12.2′′ E, 29°10′19′′-29°17′41′′ N)设置的130个种子雨收集器5年的开花数据检验这3个因素对开花的影响。结果表明, 古田山植物的开花高峰期集中在5月, 群落开花格局明显受温度和降雨的影响。利用植物DNA条形码数据研究发现, 植物间系统发育关系对古田山植物开花时间有显著影响, 亲缘关系近的物种开花时间更相近。植物的平均开花时间受最大树高的影响, 但不受传粉方式、花色、种子质量和扩散方式的影响。该研究结果说明气候因素、植物系统发育关系和功能性状都可能影响植物开花物候格局, 同时考虑这3个因素能够帮助我们更好地理解开花物候格局。  相似文献   

5.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   

6.
Leaffall phenology is an important periodical event in forests, contributing to mobilization of organic matter from primary producers to soil. For seasonal forests, leaffall periodicity has been related to rainfall regime and dry season length. In weakly seasonal forests, where there is no marked dry season, other climatic factors could trigger leaf shed. In this study, we aimed to determine if other climatic variables (wind speed, solar radiation, photosynthetic photon flux density [PPFD], day length, temperature, and relative humidity) could be better correlated with patterns of litter and leaffall in a weakly seasonal subtropical wet forest in Puerto Rico. Leaffall patterns were correlated mainly with solar radiation, PPFD, day length, and temperature; and secondarily with rainfall. Two main peaks of leaffall were observed: April–June and August–September, coinciding with the periods of major solar radiation at this latitude. Community leaffall patterns were the result of overlapping peaks of individual species. Of the 32 species analyzed, 21 showed phenological patterns, either unimodal (16 species), bimodal (three species), or multimodal (two species). Lianas also presented leaffall seasonality, suggesting that they are subject to the same constraints and triggering factors affecting trees. In addition to solar radiation as a main determinant of leaffall timing in tropical forests, our findings highlight the importance of interannual variation and asynchrony, suggesting that leaffall is the result of a complex interaction between environmental and physiological factors.  相似文献   

7.
Reproductive phenology of 171 plant species belonging to 57 families of angiosperms was studied according to life-forms in four habitat types in a savanna-forest mosaic on the Venezuelan Central Plain. Flowering, unripe fruit, and mature fruit patterns were affected significantly according to life-forms and habitats respectively. Production of flowers, unripe fruits, and mature fruits showed marked seasonality for all habitats except for the forest. Flowering peaked during the rainy season, and fruiting peaked toward the end of the rainy season. The savanna and the disturbed area had similar proportions of species that flowered over the year. The percentage of species with unripe fruits produced throughout the year was more seasonal for the disturbed area than for the other habitats. Mature fruit patterns showed an increase during the late rainy season for the ecotone and savanna. A large number of herbaceous (annual and perennial) and liana species flowered during the wet season, and a smaller fraction flowered during the dry season; and trees, shrubs, and epiphytes increased flowering activity during the dry season. Unripe fruit patterns were similar to those of flowering for all life-forms, however, tree species were less seasonal. Mature fruit production by shrubs peaked in the period of maximum rainfall, while the peak for perennial herbs was in the late rainy season and the peak for annual herbs was during the transition between the rainy season and the dry season. The largest proportion of tree and liana species with ripe fruits occurred during the dry season. Differences among phenological patterns in habitats were caused mainly by life-forms and promote a wider distribution of reproductive events in habitats and overall community in the Venezuelan Central Plain.  相似文献   

8.
Aims Changes in habitat characteristics and species composition in successional gradients could determine temporal variation in phenology of second-growth forests. We evaluated phenological patterns in tree species occurring in successional forests in southern Brazil, aiming to assess community changes along succession. We tested for general patterns and phenophase seasonality of trees of forests in successional stages and for differences in occurrence, concentration, frequency and duration of phenophases.  相似文献   

9.
Year-round flowering is widely reported in fig trees and is necessary for the survival of their short-living, specialized Agaonid pollinators. However, seasonality in both fig and leaf production has been noted in almost all published phenological studies. We have addressed the following questions in the present study: (1) Are reproductive and vegetative phenologies seasonal and, consequently, related to climate? (2) Does Ficus citrifolia produce ripe figs year round? (3) Is the fig development related to climate? And, (4) Are reproductive and vegetative phenologies independent? By investigating these questions with a F. citrifolia population over a two-year period, at the southern edge of the tropical region in Brazil, we detected phenological seasonality that was significantly correlated with climate. Our findings can be summarized as follows: (1) Trees became deciduous during the cold and dry months; (2) The flowering onset was asynchronous among individuals, but with moderate concentration during the hot and rainy months; (3) There was a correlation between the onset of flowering and vegetative phenology, with significantly higher crop initiations in individuals with full-leaf canopy; (4) Fig developmental time was longer in cold months; and (5) Ripe fig production occurred year-round and was not correlated with climate. Our results suggest that there are strong selection pressures that maintain the year-round flowering phenology in figs, for we have observed little seasonality in the phenology of such species despite the strong seasonality in the environment.  相似文献   

10.
Aims To assess the role of moisture in phenological timing in the mediterranean coastal flora of Baja California, and specifically to assess the role of coastal fog and ocean-derived moisture in plant phenology. Moisture seems to be the primary driver of flowering times and durations at the arid end of the mediterranean-climate region, where rainfall is often sporadic (temperature and day length can be expected to play a much lesser role as they are not growth limiting). We aimed to understand: What factors drive climatic variation between sites? Are there general flowering patterns allowing us to identify phenological categories? Do flowering patterns vary in relation to site-specific weather? and most importantly, does maritime influence on weather affect flowering dynamics in coastal mediterranean ecosystems?Methods The southernmost extent of the California Floristic Province (in Baja California, Mexico) is a biological diversity hotspot of high endemism and conservation value, with two steep moisture gradients: rainfall (N–S) and coastal fogs (W–E), providing an ideal study system. We installed five weather stations across the moisture gradients, recording data hourly. We monitored flowering phenology in the square kilometer surrounding each weather station from 2010 to 2013. About 86 plant taxa were monitored across the five sites, every 6–8 weeks. Averaged climatic data is presented with general trends in flowering, and specific flowering syndromes were observed. Data for flowering intensity across the sites was analyzed using a principal components analysis.Important findings Data analysis demonstrates a general seasonal pattern in flowering times, but distinct differences in local weather and phenology between the five study sites. Three flowering syndromes are revealed in the flora: (i) water responders or spring bloomers, (ii) day-length responders or fall-blooming taxa and (iii) aseasonal bloomers with no seasonal affinity. The two moisture gradients are the strongest drivers of flowering times. Inland sites showed higher phenological variation than coastal sites where seasonality is dampened by ocean-derived moisture, which extends and buffers perennial plant phenology and is a probable driver of local endemism. Phenological controls vary globally with climate and geography; moisture is the primary driver of phenology in mediterranean climates and fog is an important climatic variable in coastal Mexico.  相似文献   

11.
The phenology of leaves and stages from immature sori to spore release were studied in natural populations of two perennial herbaceous ferns, Dryopteris affinis ssp. affinis and Polystichum aculeatum, for 2 years in Italy. The Generalized Additive Model for Location, Scale and Shape (GAMLSS) was used to predict a particular phenological event from the climatic variables. Both fern species are evergreen with leaf lifespan of 13–14 months in D. affinis ssp. affinis and 15–24 months in P. aculeatum. Their leaf production is seasonal with most flushed in spring. In D. affinis ssp. affinis the decaying of old leaves is sudden whereas in P. aculeatum it is gradual, and in both types the decaying is accelerated just as the new leaves emerge. Temperature is the best predictor for the development of sori and spore release. The end of spore release and leaf emergence are positively affected by temperature and negatively affected by rainfall and snow cover for P. aculeatum. An almost similar response to climatic factors of emergent and senescent leaves and their phenology supportsthe hypothesis that old leaves serve as nutrient storage organs for new leaf growth. Comparison the phenological patterns between the 2 years indicated that the time lapses between each phenological event were the same within seasons for D. affinis ssp. affinis but show some differences for P. aculeatum. We also hypothesize that endogenous factors may play an important role in the phenology of P. aculeatum.  相似文献   

12.
An overview is presented of the phenological models relevant for boreal coniferous, temperate-zone deciduous and Mediterranean coniferous forest ecosystems. The phenology of the boreal forests is mainly driven by temperature, affecting the timing of the start of the growing season and thereby its duration, and the level of frost hardiness and thereby the reduction of foliage area and photosynthetic capacity by severe frost events. The phenology of temperate-zone forests is also mainly driven by temperature. Since temperate-zone forests are mostly mixed-species deciduous forests, differences in phenological response may affect competition between tree species. The phenology of Mediterranean coniferous forests is mainly driven by water availability, affecting the development of leaf area, rather than the timing of phenological events. These phenological models were subsequently coupled to the process-based forest model FORGRO to evaluate the effect of different climate change scenarios on growth. The results indicate that the phenology of each of the forest types significantly affects the growth response to a given climate change scenario. The absolute responses presented in this study should, however, be used with caution as there are still uncertainties in the phenological models, the growth models, the parameter values obtained and the climate change scenarios used. Future research should attempt to reduce these uncertainties. It is recommended that phenological models that describe the mechanisms by which seasonality in climatic drivers affects the phenological aspects of trees should be developed and carefully tested. Only by using such models may we make an assessment of the impact of climate change on the functioning and productivity of different forest ecosystems. Received: 21 October 1999 / Revised: 10 May 2000 / Accepted: 10 May 2000  相似文献   

13.
From January 2000 through December 2002, focal plant censuses were carried out to assess monthly leaf, flower, and ripe fruit presence for 423 individual plants (96 plant species, 39 families) within the littoral forest of Sainte Luce, Madagascar. Fruit‐on‐trail counts were conducted additionally in 2000 to allow comparison between both phenological methods. Despite low climatic seasonality and the absence of a dry season in the littoral forest, interannual phenological patterns were seasonal. Within year variability was present with clear periods of abundance and scarcity. All phenophases were highly intercorrelated and peaked from November through February. This was found in other humid Malagasy forests as well, while in dry Malagasy forests phenophases were separated in time perhaps due to the more seasonal climate. Temperature and day length seemed to influence all phenophases, the latter showing the strongest effect, while rainfall was only weekly associated with flushing and flowering. Differences in the presence of ripe fruits when comparing between sampling methods can be explained by the differential contribution of several life forms.  相似文献   

14.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

15.
As the influence of climate change on tropical forests becomes apparent, more studies are needed to understand how changes in climatic variables such as rainfall are likely to affect tree phenology. Using a twelve‐year dataset (2005–2016), we studied the impact of seasonal rainfall patterns on the fruiting phenology of 69 tree species in the rain forest of southeastern Madagascar. We found that average annual rainfall in this region has increased by >800 mm (23%) during this period relative to that recorded for the previous 40 years and was highly variable both within and between years. Higher monthly measures of fruiting richness and the intensity of fruiting in our sample community were associated with significantly higher levels of rainfall. We also found that less rainfall during the dry season, but not the wet season, was associated with a significant shift toward later timing of peak richness and peak intensity of fruiting in the subsequent 12 months; however, this pattern was driven primarily by an extreme drought event that occurred during the study period. Longer time scales of phenology data are needed to see whether this pattern is consistent. Madagascar is expected to experience more extremes in rainfall and drought with increasing climate change. Thus, the linkages between variable precipitation and the fruiting phenology of forest trees will have important consequences for understanding plant reproduction and the ability of Madagascar's wildlife to cope with a changing climate.  相似文献   

16.
Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting. ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, and ENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data.  相似文献   

17.
18.
The reproductive phenology of seven species of Rubiaceae from the Brazilian Atlantic rain forest was compared to evaluate the occurrence of phylogenetic constraints on flowering and fruiting phenologies. Since phenological patterns can be affected by phylogenetic constraints, we expected that reproductive phenology would be similar among plants within a family or genus, occurring during the same time (or season) of the year. Observations on flowering and fruiting phenology were carried out monthly, from December 1996 to January 1998, at Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba, S?o Paulo State, Brazil. Nine phenological variables were calculated to characterize, quantify and compare the reproductive phenology of the Rubiaceae species. The flowering patterns were different among the seven species studied, and the Kruskal-Wallis test indicated significant differences in flowering duration first flowering, peak flowering and flowering synchrony. The peaks and patterns of fruiting intensity were different among the Rubiaceae species studied and they differed significantly from conspecifics in the phenological variables fruiting duration, fruiting peak date, and fruiting synchrony (Kruskal-Wallis test). Therefore, we found no evidence supporting the phylogenetic hypotheses, and climate does not seem to constrain flowering and fruiting patterns of the Rubiaceae species in the understory of the Atlantic forest.  相似文献   

19.
Flowering phenology is very sensitive to climate and with increasing global warming the flowering time of plants is shifting to earlier or later dates. Changes in flowering times may affect species reproductive success, associated phenological events, species synchrony, and community composition. Long‐term data on phenological events can provide key insights into the impacts of climate on phenology. For Australia, however, limited data availability restricts our ability to assess the impacts of climate change on plant phenology. To address this limitation other data sources must be explored such as the use of herbarium specimens to conduct studies on flowering phenology. This study uses herbarium specimens for investigating the flowering phenology of five dominant and commercially important Eucalyptus species of south‐eastern Australia and the consequences of climate variability and change on flowering phenology. Relative to precipitation and air humidity, mean temperature of the preceding 3 months was the most influential factor on the flowering time for all species. In response to a temperature increment of 1°C, a shift in the timing of flowering of 14.1–14.9 days was predicted for E. microcarpa and E. tricarpa while delays in flowering of 11.3–15.5 days were found for E. obliqua, E. radiata and E. polyanthemos. Eucalyptus polyanthemos exhibited the greatest sensitivity to climatic variables. The study demonstrates that herbarium data can be used to detect climatic signals on flowering phenology for species with a long flowering duration, such as eucalypts. The robust relationship identified between temperature and flowering phenology indicates that shifts in flowering times will occur under predicted climate change which may affect reproductive success, fitness, plant communities and ecosystems.  相似文献   

20.
The evergreen broad-leaved forest of Rhododendron ponticum represents a special type of Mediterranean vegetation because of their relict nature (allegedly pre-glacial, Southern-Iberian and Pontic) and connection with Macaronesian-Atlantic flora. The findings of ecomorphological (growth forms) and phenological (phenology) studies point to characteristics typical of its relict character and its relationship with subtropical lauroid vegetation (greater forest stratification, larger leaves, high percentage of photosynthetic stems, scarce tomentosity, pre-flowering in a season different to Mediterranean species and closeness of autumn–winter flowering species). There are, however, links with typical Mediterranean vegetation (Quercus L. forests) that surrounds the Rhododendron stands, due to its adaptation to Mediterranean climate (sclerophyll leaves, plant and leaf duration, post-fire regeneration, fleshy fruit and fruit setting-seed dispersal seasonality). Within the community, different groups of plants show different adaptations to the same biotope, suggesting their distinct paleo-phytogeographical origins. The results confirm the singularity of this vegetation within the typically Mediterranean environment where it grows and its connections with other extra-Mediterranean types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号