首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “alkali” light chains of rabbit skeletal muscle myosin have been compared with troponin-C from the same source, and both of these are compared with parvalbumins from pike, hake and carp. The similarities in amino acid sequence indicate that these proteins all evolved from a common ancestor.  相似文献   

2.
Phosphodiesterase activator protein and troponin-C have been purified from rat testis and rabbit skeletal muscle, respectively. The two proteins appear to be structurally distinct since the activator protein migrates faster than troponin-C on sodium dodecyl sulfate-polyacrylamide gels. Each of the calcium-binding proteins will, however, substitute for the other in their respective biological systems. Testis activator protein forms a complex with rabbit muscle troponin subunits TnI and TnT soluble in low salt. This hybrid complex (AIT) can regulate rabbit skeletal muscle actomyosin ATPase activity. AIT regulation, although influenced by free Aa2+ levels, is distinct from that of native troponin. Likewise, muscle troponin-C can substitute for activator protein in the stimulation of cyclic nucleotide phosphodiesterase. Troponin-C will fully stimulate phosphodiesterase although its affinity is 600-fold lower than that of activator protein. Ca2+ regulation studies demonstrate that both proteins require micormolar levels of free Ca2+ to induce phosphodiesterase activation. Activator protein requires 1.2 x 10(6) M and troponin-C, 1.9 X 10(6) M free Ca2+ for half-maximal stimulation of phosphodiesterase. The biological cross-reactivity of these proteins supports the sequence homology recently reported by Watterson et al. (Watterson, D.M., Harrelson, W.G., Keller, P.M., Sharief, F., and Vanaman, T.C. (1976) J.Biol. Chem. 251, 4501-4513). In addition, this preliminary study suggests that this nonmuscle troponin-C-like protein potentially may function in other Ca2+-regulated cellular events in addition to its moculation of cyclic nucleotide levels.  相似文献   

3.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

4.
A library of cDNA clones was constructed from adult rat skeletal muscle mRNA, from which a set of contractile protein clones was selected. These clones were identified by sequencing the cDNA inserts and comparing the derived amino acid sequences with published sequences of rabbit contractile proteins. In this manner, clones corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, alpha-tropomyosin, and alpha-actin were identified. A high degree of amino acid sequence conservation was found upon comparison of the rat and rabbit proteins. Using the cDNA clone panel, we analyzed the expression of abundant rat muscle mRNAs. We show that abundant rat muscle mRNAs can be classified into four developmentally regulated groups, based upon their expression at different stages of myogenesis. One class of mRNAs is expressed during all stages of muscle development. Since these mRNAs are also present in nonmuscle tissues, we conclude that they code for housekeeping proteins. The second class of mRNAs is present in both embryonic and adult muscle, while a third class of mRNAs is expressed only in adult muscle. A small number of mRNAs, which are present at greater levels in undifferentiated myoblasts than in adult muscle, comprise a fourth class. These results suggest the existence of at least four modes of gene control during myogenesis.  相似文献   

5.
A cDNA clone encoding 55-kDa multifunctional, thyroid hormone binding protein of rabbit skeletal muscle sarcoplasmic reticulum was isolated and sequenced. The cDNA encoded a protein of 509 amino acids, and a comparison of the deduced amino acid sequence with the NH2-terminal amino acid sequence of the purified protein indicates that an 18-residue NH2-terminal signal sequence was removed during synthesis. The deduced amino acid sequence of the rabbit muscle clone suggested that this protein is related to human liver thyroid hormone binding protein, rat liver protein disulfide isomerase, human hepatoma beta-subunit of prolyl 4-hydroxylase and hen oviduct glycosylation site binding protein. The protein contains two repeated sequences Trp-Cys-Gly-His-Cys-Lys proposed to be in the active sites of protein disulfide isomerase. Northern blot analysis showed that the mRNA encoding rabbit skeletal muscle form of the protein is present in liver, kidney, brain, fast- and slow-twitch skeletal muscle, and in the myocardium. In all tissues the cDNA reacts with mRNA of 2.7 kilobases in length. The 55-kDa multifunctional thyroid hormone binding protein was identified in isolated sarcoplasmic reticulum vesicles using a monoclonal antibody specific to the 55-kDa thyroid hormone binding protein from rat liver endoplasmic reticulum. The mature protein of Mr 56,681 contains 95 acidic and 61 basic amino acids. The COOH-terminal amino acid sequence of the protein is highly enriched in acidic residues with 17 of the last 29 amino acids being negatively charged. Analysis of hydropathy of the mature protein suggests that there are no potential transmembrane segments. The COOH-terminal sequence of the protein, Arg-Asp-Glu-Leu (RDEL), is similar to but different from that proposed to be an endoplasmic reticulum retention signal; Lys-Asp-Glu-Leu (KDEL) (Munro, S., and Pelham, H.R.B. (1987) Cell 48, 899-907). This variant of the retention signal may function in a similar manner to the KDEL sequence, to localize the protein to the sarcoplasmic or endoplasmic reticulum. The positively charged amino acids Lys and Arg may thus interchange in this retention signal.  相似文献   

6.
本文对玉米花粉肌动蛋白和兔骨骼肌肌动蛋白进行了比较研究。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白具有相同的分子量(42KD)。玉米花粉肌动蛋白可与兔抗鸡胃肌动蛋白抗血清产生免疫沉淀反应。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的氨基酸组成以及胰蛋白酶水解所得到的肽谱都相似。它们的羧基未端氨基酸顺序完全一致,其顺序都是Lys.Cys.Phe(COOH)。它们的圆二色谱基本相同,由圆二色谱计算得到的二级结构数据也相近。以上的结果表明了玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的相似性。  相似文献   

7.
Summary The primary structure of the major component of human skeletal muscle troponin C has been established. The troponin C was purified by ammonium sulphate and isoelectric fractionation, followed by two chromatographic steps on DEAE Sephadex. The sequence was determined from the different overlapping enzymic peptides and by dansyl-Edman degradation. The only difference between rabbit skeletal muscle troponin C and the major component of human skeletal troponin C was found at position 112: Ala (rabbit), Pro (human). The partial amino acid sequence of the first 86 residues of the minor component of human skeletal troponin C was found to resemble the troponin C from bovine cardiac muscle. The only difference between them, has tentatively been located at position 62: Glu (human), Asp (bovine). These similarities suggest that troponin C is, from the point of view of molecular evolution, one of the most conservative proteins so far studied.  相似文献   

8.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

9.
Amino acid sequence of rabbit cardiac troponin T   总被引:2,自引:0,他引:2  
The complete amino acid sequence of the major isoform of rabbit cardiac troponin T was determined by the application of manual and automated Edman degradation procedures to fragments generated by suitable chemical or proteolytic cleavages. The protein has a polypeptide chain length of 276 amino acid residues, a Mr of 32,881, is negatively charged at neutral pH, and must be encoded by a different structural gene than rabbit skeletal troponin T. A more basic isoform differs in the NH2-terminal region by the replacement of 7 glutamic acid residues by neutral amino acids. Comparison of the sequence with that of rabbit skeletal troponin T shows close homology in those structural regions (residues 47-151 and 170-236 of rabbit skeletal troponin T) previously implicated in interactions with tropomyosin, troponin I and troponin C and predicts similar secondary structural features. In addition, the NH2- (16 residues) and COOH-terminal (10 residues) segments are homologous. In the cardiac protein, the regions of residues 17-46, 152-169, and 237-249 (rabbit skeletal troponin T numbering scheme) show little similarity with the skeletal protein and include multiple amino acid differences as well as insertions and/or deletions. Within these nonhomologous segments, however, there are regions of high similarity or identity with the amino acid sequence of chicken cardiac troponin T deduced from DNA sequencing (Cooper, T.A., and Ordahl, C.P. (1985) J. Biol. Chem. 260, 11140-11148). These include residues 36-46, 152-161, and 237-242 and may represent regions of functional importance for cardiac troponin T as compared with the skeletal protein.  相似文献   

10.
The complete amino acid sequence of the calcium-binding protein (CaBP) from pig intestinal mucosa has been determined: Ac-Ser-Ala-Gln-Lys-Ser-Pro-Ala-Glu-Leu-Lys-Ser-Ile-Phe-Glu-Lys-Tyr-Ala-Ala-Lys-Glu-Gly-Asp-Pro-Asn-Gln-Leu-Ser-Lys-Glu-Glu-Leu-Lys-Gln-Leu-Ile-Gln-Ala-Glu-Phe-Pro-Ser-Leu-Leu-Lys-Gly-Pro-Arg-Thr-Leu-Asp-Asp-Leu-Phe-Gln-Glu-Leu-Asp-Lys-Asn-Gly-Asn-Gly-Glu-Val-Ser-Phe-Glu-Glu-Phe-Gln-Val-Leu-Val-Lys-Lys-Ile-Ser-Gln-OH. The N-terminal octapeptide sequence was determined by mass spectrometric analysis by Morris and Dell. The first 45 residues of bovine CaBP differ only in six positions from the corresponding sequence of the porcine protein, except that the sequence starts in position two of the porcine sequence. The mammalian intestinal CaBP's belong to the troponin-C superfamily on the basis of an analysis by Barker and Dayhoff.  相似文献   

11.
Amino acid sequence analysis of the large cyanogen bromide fragment (residues 142 to 281) derived from the COOH-terminal half of the mixed tropomyosin population of rabbit skeletal muscle has been carried out. The isolation and sequence analysis of peptides derived from chymotryptic digests and from tryptic digests of the maleylated fragment permitted the alignment of the complete sequence except for the assignment of acids or amides at residues 142, 144, and 145. Selected peptides from a Myxobacter 495 alpha-lytic protease digest have confirmed certain overlaps. Based on previously published data the sequence can be extended to residue 284, the COOH-terminal end of the protein. In fourteen positions, amino acid substitutions have been observed. In one of these (residue 199) the sequence evidence indicates a minimum of four different polypeptide chains in the mixed tropomyosin population. The assignment of particular amino acid residues to these positions for the major alpha-component of rabbit skeletal tropomyosin has been based on the relative recoveries of peptides containing different residues in these positions.  相似文献   

12.
13.
DNA sequence complementary to the mRNA for rabbit interleukin-1 precursor (preIL-1) has been cloned from the cDNA library constructed using partially purified poly(A)+RNA from induced rabbit alveolar macrophages by mRNA hybridization-translation assay. By using this cDNA as a probe, human IL-1 cDNA was isolated from the cDNA library prepared using poly(A)+RNA from induced HL-60 cells, a human monocyte-like cell line. The amino acid sequences of the human and rabbit preIL-1 deduced from the cDNA sequences reveal their primary structures which consists of 271 and 267 amino acid residues, respectively. The amino acid sequence is 64% conserved between human and rabbit. The difference in number of amino acid residues results from the carboxy-terminal extention of 4 amino acid residues in human preIL-1. Expression of the cloned human cDNA in E. coli yielded biologically active IL-1.  相似文献   

14.
Analysis of the quantitative precipitin reaction of acylphosphatase from porcine skeletal muscle with rabbit antiserum indicated the presence of at least two antigenic determinants on the porcine enzyme molecule. Immunological cross-reactivities of acylphosphatases from equine and rabbit skeletal muscles were examined. In double immunodiffusion with the antiserum, the precipitin lines of the porcine and equine enzymes completely fused, while the rabbit enzyme gave no precipitin line. The reaction between the 125I-labeled porcine enzyme and its antibody was inhibited to the same extent by the porcine and equine enzymes, but not by the rabbit enzyme. The three enzymes were similar in net charge and molecular weight on polyacrylamide gel electrophoreses. No conformational difference among the three enzymes was observed in their circular dichroism spectra. The amino acid composition of the rabbit enzyme differed from those of the porcine and equine enzymes in the contents of Glu, Gly, Lys, and Arg. Differences in the sequence of the rabbit enzyme from that of the porcine enzyme were investigated by comparison of the peptide maps of the tryptic peptides of the two enzymes. Four peptides of the rabbit enzyme were located at different positions from those of the porcine enzyme. Three of the four peptides from both enzymes were sequenced and all the tryptic peptides of both enzymes were characterized by amino acid analysis. The tryptic peptides of rabbit enzyme were tentatively aligned on the basis of their amino acid compositions and sequence homologies, compared with the corresponding peptides of the porcine enzyme. Among five amino acid residues of the porcine enzyme, Arg-4, Asp-28, Arg-31, Glu-56, and Ile-68, which are replaced in the rabbit enzyme, Arg-4 and Asp-28 are considered to be included in the antigenic determinants.  相似文献   

15.
The inhibitor protein (PKI) of the cAMP-dependent protein kinase was first characterized from rabbit skeletal muscle. More recently a form of PKI was isolated and cloned from rat testis which shares relatively limited amino acid sequence with the rabbit skeletal muscle form. We have now isolated a cDNA from rat brain which encodes a protein corresponding to the rabbit skeletal muscle PKI. This establishes the presence of the "skeletal muscle" and "testis" proteins in the same species and therefore that they clearly represent distinct isoforms. We have also demonstrated that the isoform from testis, like the skeletal muscle isoform, is specific for the cAMP-dependent protein kinase and that it is able to inhibit this enzyme when expressed in cultured JEG-3 cells. Both forms contain the five specific amino acid recognition determinants which have been shown to be required for high affinity binding to the protein kinase catalytic site, although there is some noted lack of conservation of codons used for these residues. Overall, the two rat isoforms are only 41% identical at the amino acid level and 46% at the level of coding nucleotides. We propose that the rabbit skeletal muscle and rat testis forms be designated PKI alpha and PKI beta, respectively. Using Northern blot analysis, we have examined the tissue distribution of the two forms in the rat and their relative expression during development. In the adult rat, mRNA of the PKI alpha species is highest in muscle (both skeletal and cardiac) and brain (cortex and cerebellum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal.
The two smooth muscle actins—bovine aorta actin and chicken gizzard actin—differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared.
In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably closer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

17.
Amino acid sequence of chicken gizzard gamma-tropomyosin   总被引:7,自引:0,他引:7  
Chicken gizzard muscle tropomyosin has been fractionated into its two major components, beta and gamma and the amino acid sequence of the gamma component established by the isolation and sequence analysis of fragments derived from cyanogen bromide cleavage and tryptic digestions. Despite its much slower mobility on sodium dodecyl sulfate-polyacrylamide electrophoretic gels, it has the same polypeptide chain length (284 residues) as the alpha and beta components of rabbit skeletal muscle. Evidence for microheterogeneity of the chicken gizzard component was detected both on electrophoretic gels and in the sequence analysis. The gamma component is more closely related to rabbit skeletal alpha-tropomyosin than to the beta component. While the protein is highly homologous to the rabbit skeletal tropomyosins, significant sequence differences are observed in two regions; between residues 42-83 and 258-284. In the latter region (COOH-terminal) the alterations in sequence are very similar to those seen in platelet tropomyosin when compared with the skeletal proteins.  相似文献   

18.
Internal homologies in an amino acid sequence of a protein and in amino acid sequences of two different proteins are examined, using correlation coefficients calculated from the sequences when residues are replaced by various quantitative properties of the amino acids such as hydrophobicity. To improve the signal-noise ratio the average correlation coefficient is used to detect homology because the correlation depends on the property considered. In this way, any sequence repetition in a protein and the extent of the similarity and difference among proteins can be estimated quantitatively. The procedure was applied first to the sequences of proteins which have been assumed on other grounds to contain some internal sequence repetitions, α-tropomyosin from rabbit skeletal muscle, calmodulin from bovine brain, troponin C from skeletal and cardiac muscle, and then to the sequences of calcium binding proteins, calmodulin, troponin C, and L2 light chain of myosin. The results show that α-tropomyosin has a markedly periodic sequence at intervals of multiples of seven residues throughout the whole sequence, and calmodulin and skeletal troponin C contain two homologous sequences, the homology of troponin C being weaker than that of calmodulin. Candidates for the calcium binding regions of both troponin C, calmodulin, and L2 light chain are the homologous parts having a high average correlation coefficient (about 0·5) with respect to the sequences of the CD and EF hand regions of carp parvalbumin. The procedure may be a useful method for searching for homologous segments in amino acid sequences.  相似文献   

19.
The complete amino acid sequence of rabbit skeletal muscle troponin I was determined by the isolation of the cyanogen bromide fragments and the tryptic methionine-containing peptides. Troponin I contains 179 amino acid residues and has a molecular weight of 20864. Its N-terminus is acetylated. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50055 (23 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5.  相似文献   

20.
Y Hakamata  J Nakai  H Takeshima  K Imoto 《FEBS letters》1992,312(2-3):229-235
The complete amino acid sequence of a novel ryanodine receptor/calcium release channel from rabbit brain has been deduced by cloning and sequence analysis of the cDNA. This protein is composed of 4872 amino acids and shares characteristic structural features with the skeletal muscle and cardiac ryanodine receptors. RNA blot hybridization analysis shows that the brain ryanodine receptor is abundantly expressed in corpus striatum, thalamus and hippocampus, whereas the cardiac ryanodine receptor is more uniformly expressed in the brain. The brain ryanodine receptor gene is transcribed also in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号