首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level.  相似文献   

2.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   

3.
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high-shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained when PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible. The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress-strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.  相似文献   

4.
The detection of phase separation and identification of miscibility in biopolymer blends is an important aspect for the improvement of their physical properties. In this article, the phase separation in blends of poly(3-hydroxybutyrate) (PHB) with poly(L-lactic acid) (PLA) and poly(epsilon-caprolactone) (PCL), respectively, has been studied as a function of the blend composition by FT-IR imaging spectroscopy. For both polymer blend systems, a miscibility gap has been found around the 50:50% (w/w) composition of the two components. Furthermore, the separating phases have been identified as blends of the two polymer components and their compositions could be determined from calibrations based on the spectra of the blends in the compositional range of miscibility. The data derived from FT-IR spectroscopic imaging were corroborated by additional DSC analyses and mechanical stress-strain measurements of polymer blend films, which exhibited a characteristic fracture behavior as a function of PHB composition.  相似文献   

5.
Plasticization of poly(L-lactide) with poly(propylene glycol)   总被引:3,自引:0,他引:3  
A new plasticizer for poly(L-lactide) (PLA)-poly(propylene glycol) (PPG) is proposed. The advantage of using PPG is that it does not crystallize, has low glass transition temperature, and is miscible with PLA. PLA was plasticized with PPGs with nominal Mw of 425 and 1000 g/mol. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison. The thermal and tensile properties of PLA and PLA with 5-12.5 wt % of the plasticizers were studied. In blends of PLA with PPGs the glass transition temperature was lower than that of neat PLA. Both PPGs enhanced the crystallizability of PLA albeit less than PEG. All of the plasticizers increased also the ability of PLA to plastic deformation which was reflected in a decrease of yield stress and in an increase of elongation at break. The effect was enhanced by the higher PPG content and also by lower molecular weight of PPG. A phase separation occurred only in the blend containing 12.5 wt % of PPG with higher molecular weight. The evidences of crazing were found in deformed samples of PLA with low plasticizer content, whereas the samples with higher content of plasticizers crystallized due to deformation.  相似文献   

6.
Blends of cross-linked poly(ethylene glycol) dimethacrylate (PEGDMA) and poly(d,l-lactide) (PLA) were prepared by mixing photoactive PEGDMA (molecular mass: 875 g/mol) and PLA, and subsequently photopolymerizing the mixture with visible light. The effects of PLA molecular mass and mass fraction on the rheological properties of the PEGDMA/PLA mixtures, and on the degree of methacrylate vinyl conversion (DC), as well as blend miscibility, microstructure, mechanical properties, in vitro swelling behavior, and cell responses were studied. PLA-2K (molecular mass: 2096 g/mol) and PLA-63K (molecular mass: 63 000 g/mol) formed miscible and partially miscible blends with cross-linked PEGDMA, respectively. The addition of the PLA-2K did not affect the immediate or post-cure (>24 h) DC of the PEGDMA upon photopolymerization. However, the addition of PLA-63K decreased the immediate DC of the PEGDMA, which can be increased through extending the curing time or post-curing period. Compared to the cross-linked neat PEGDMA and PLA-2K/PEGDMA blends, PLA-63K/PEGDMA blends were significantly stronger, stiffer, and tougher. Both types of blends and the cross-linked PEGDMA swelled when soaked in a phosphate buffered saline (PBS) solution. The attachment and spreading of MCT3-E1 cells increased with increasing PLA-63K content in the blends. The facile and rapid formation of PEGDMA/PLA blends by photopolymerization represents a simple and efficient approach to a class of biomaterials with a broad spectrum of properties.  相似文献   

7.
As a biodegradable polyester, polylactide (PLA) has applications as a packaging material, in biomedical fields and tissue engineering. With the dual aim of improving its properties and biodegradability, PLA was blended with other polymers such as gum arabic, thermoplastic starch, microcrystalline cellulose, polyethylene glycol and polyhydroxy butyrate in 1:1 (w/w) by melt-blending technique. The thermal properties of the blends were compared with that of unblended PLA by thermo-gravimetric analysis. Biodegradation using Lentzea waywayandensis was in the order of PLA–gum arabic?>?PLA–thermoplastic starch?>?PLA(virgin)?>?PLA–microcrystalline cellulose?>?PLA–polyethylene glycol?>?PLA–polyhydroxy butyrate. Weight loss of 99?% (w/w) was noted within 4?days for PLA–thermoplastic starch and PLA-gum arabic blends.  相似文献   

8.
Both polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers. They are thermoplastics which can be processed using most conventional polymer processing methods. PLA is high in strength and modulus (63 MPa and 3.4 GPa, respectively) but brittle (strain at break 3.8%) while PBAT is flexible and tough (strain at break approximately 710%). In view of their complementary properties, blending PLA with PBAT becomes a natural choice to improve PLA properties without compromising its biodegradability. In this study, PLA and PBAT were melt blended using a twin screw extruder. Melt elasticity and viscosity of the blends increased with the concentration of PBAT. Crystallization of the PLA component, phase morphology of the blend, mechanical properties, and toughening mechanism were investigated. The blend comprised an immiscible, two-phase system with the PBAT evenly dispersed in the form of approximately 300 nm domains within the PLA matrix. The PBAT component accelerated the crystallization rate of PLA but had little effect on its final degree of crystallinity. With the increase in PBAT content (5-20 wt %), the blend showed decreased tensile strength and modulus; however, elongation and toughness were dramatically increased. With the addition of PBAT, the failure mode changed from brittle fracture of the neat PLA to ductile fracture of the blend as demonstrated by tensile test and scanning electron microcopy (SEM) micrographs. Debonding between the PLA and PBAT domains induced large plastic deformation in PLA matrix ligaments.  相似文献   

9.
Preparation and properties of plasticized poly(lactic acid) films   总被引:2,自引:0,他引:2  
Poly(lactic acid), PLA, was blended with monomeric and oligomeric plasticizers in order to enhance its flexibility and thereby overcome its inherent problem of brittleness. Differential scanning calorimetry, dynamic mechanical analysis, transmission electron microscopy, and tensile testing were used to investigate the properties of the blends. Monomeric plasticizers, such as tributyl citrate, TbC, and diethyl bishydroxymethyl malonate, DBM, drastically decreased the T(g) of PLA, but the blends showed no morphological stability over time since rapid cold crystallization caused a size reduction of the amorphous domains in PLA. Consequently, the ability of PLA to accommodate the plasticizer diminished with the increase in crystallinity and migration of the plasticizer occurred. Increasing the molecular weight of the plasticizers by synthesizing oligoesters and oligoesteramides resulted in blends that displayed T(g) depressions slightly smaller than with the monomeric plasticizers. The compatibility with PLA was dependent on the molecular weight of the oligomers and on the presence or not of polar amide groups that were able to positively interact with the PLA chains. Aging the materials at ambient temperature revealed that the enhanced flexibility as well as the morphological stability of the films plasticized with the oligomers could be maintained as a result of the higher molecular weight and the polar interactions with PLA.  相似文献   

10.
Molecular motion in solid poly(L -alanine), Poly(L -leucine), poly(L -valine), and polyglycine has been investigated through measurement of the portion spin-lattice relaxation time at 30 and 60 MHz between 110 and 350°K. Rapid random reoriention of sied-chain methyl groups provides the dominent source of relaxation in the first three; activation energies are 10.5 ± 1 1, 8.5 ± 1 kJ/mol, respectively, significantly lower than in the monomeric crystals. Relaxation times in poyglycine are two orders of magnitude longer than in the monomeric crystals. Relaxation times in polyglycine, significantly lower than in the monomeric crystals. Relaxation times in polyglycine are two orders of magnitude longer and are attributed mainly to segmental motions of the polymer chains. Evidence of nonexponential recovery of nuclear magnetization was encountered in the first three homopolyamino acids but not in polylycine, and was attributed to the correlated time to characterize these motions gave quite good agreement with the data; some improvement was obtained for two polymers using a Cole-Davidson distribution of correlation times. For biopolymers using a Cole-Davidson distribution of correlation times. For biopolymers generally it is concluded that rapid methyl group reorientation is a common dynamical feature and an important source of nuclear magnetic relaxation.  相似文献   

11.
The microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blend foils were investigated in 1 year long laboratory soil burial experiments. Different PLA/PHB foils were tested: (a) PLA/PHB original transparent foil, (b) PLA/PHB carbon black filled foil and (c) PLA/PHB black foil previously exposed for 90 days to sun light. The microbiome diversity of these three types of foil was compared with that identified from soil/perlite sample at the beginning of experiment and that developed on a cellulose mat. Culture-dependent and culture-independent (DGGE-cloning) approaches together with PLA, PHB and PLA/PHB degradation plate assays were employed. The cultivation strategy combined with degradation tests permitted the isolation and evaluation of several PLA/PHB blend degrading microorganisms such as members of the genera Bacillus, Paenibacillus, Streptomyces, Rhodococcus, Saccharothrix, Arthrobacter, Aureobasidium, Mortierella, Absidia, Actinomucor, Bjerkandera, Fusarium, Trichoderma and Penicillium. The DGGE-cloning investigation increased the information about the microbial communities occurring during bioplastic degradation detecting several bacterial and fungal taxa and some of them (members of the orders Anaerolineales, Selenomonadales, Thelephorales and of the genera Pseudogymnoascus and Pseudeurotium) were revealed here for the first time. This survey showed the microbiome colonizing PLA/PHB blend foils and permitted the isolation of several microorganisms able to degrade the tested polymeric blends.  相似文献   

12.
Blends of soy protein (SP) and a semicrystalline polylactide (PLA) were prepared using a twin-screw extruder. The melt rheology, phase morphology, mechanical properties, water resistance, and thermal and dynamic mechanical properties were investigated on specimens prepared by injection molding of these blends. The melt flowability of soy-based plastics was improved through blending with PLA. Scanning electron microscopy revealed that a co-continuous phase structure existed in the blends with soy protein concentrate (SPC) to PLA ratios ranging from 30:70 to 70:30. SPC/PLA blends showed fine co-continuous phase structures, while soy protein isolate (SPI)/PLA blends presented severe phase coarsening. At the same SP to PLA ratios, SPC/PLA blends demonstrated a higher tensile strength than SPI/PLA blends. The water absorption of soy plastics was greatly reduced by blending with PLA. The compatibility was improved by adding 1-5 phr poly(2-ethyl-2-oxazoline) (PEOX) in the blends, and the resulting blends showed an obvious increase in tensile strength and a reduction in water absorption for SPI/PLA blends. The compatibility between SP and PLA was evaluated by mechanical testing, dynamic mechanical analysis (DMA), water absorption, and scanning electron microscopy (SEM) experiments. Differential scanning calorimetry (DSC) revealed that PLA in the blends was mostly amorphous in the injection molded articles, and SP accelerated the cold crystallization and could increase the final crystallinity of PLA in the blends.  相似文献   

13.
By using the static correlations of fluctuations in the dihedral angles of the α-helices of polyglycine and poly(L -alanine) calculated previously, geometrical fluctuations of a section (consisting of up to 18 peptide units) of the α-helices of infinite length are calculated. These fluctuations are found to differ in some respects (e.g., the dependence of amplitudes on the length of section) from those of a circular rod made of homogeneous continuous material. However, the moduli of the mechanical strengths (tensile Young's modulus, bending Young's modulus, and the shear modulus) of a circular rod are calculated, whose geometrical fluctuations are approximately equal to the fluctuations of a section consisting of 18 peptide units. They are of the order of 1011 dyn/cm2. The tensile rigidity, flexural rigidity, and torsional rigidity are calculated to be 1.20 × 10?3 dyn, 2.46 × 10?19 dyn·cm2 and 1.79 × 10?19 dyn·cm2 for polyglycine, and 1.96 × 10?3 dyn, 4.05 × 10?19 dyn·cm2 and 3.28 × 10?19 dyn·cm2 for poly(L -alanine), respectively.  相似文献   

14.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

15.
The biodegradation of poly(L-lactide) (PLA) is reviewed. The important role of actinomycetes in PLA degradation is emphasized. These PLA-degrading actinomycetes belong phylogenetically to the Pseudonocardiaceae family and related genera, including Amycolatopsis, Lentzea, Streptoalloteichus, Kibdelosporangium and Saccharothrix. A PLA-degrading enzyme purified from an isolated Amycolatopsis strain-41 has substrate specificity on PLA higher than proteinase K. The application of these strains and their enzymes can be effectively used for biological treatment of plastic wastes containing PLA.  相似文献   

16.
In order to investigate the mechanism of dipalmitoylphosphatidylcholine (DPPC, L-alpha-lecithin) stimulation of the prostaglandin E (PGE) production of the amniotic membrane, effects of DPPC (50-800 micrograms/ml) on phospholipase A2 (PLA2), phospholipase C (PLC), PG endoperoxide synthase, and PGE synthase activities of human amniotic membrane were studied. Only PLA2 activity was increased by DPPC, suggesting that lecithin, the major surfactant component, increases the PGE production of the amniotic membrane by activating PLA2.  相似文献   

17.
The miscibility of polyethylene terephthalate (PET)/polylactide (PLA) blends is studied through atomistic molecular dynamics (MD) and mesoscale dissipative particle dynamics (DPD) simulation. Five PET/PLA blends (with the weight ratio at 90/10, 70/30, 50/50, 30/70 and 10/90) as well as pure PET and PLA are examined. The solubility parameter values obtained by using the MD simulation are in good agreement with the reference data. The Flory–Huggins parameters, χ, which are computed for different blends and determined from the cohesive energy densities, with the radial distribution functions g(r) of the inter-molecular atoms, suggest that PET is completely miscible with PLA over the entire composition range. This is further proved by the mesoscopic morphologies of PET/PLA blends. All the simulation results are qualitatively consistent with the experimental results, and demonstrate that the modelling strategies in this study may serve as a powerful tool for predicting miscibility and mesoscopic morphology of polymer blends.  相似文献   

18.
The compatibility of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was studied over a wide range of compositions at 383, 413 and 443 K, respectively, by atomistic and mesoscopic modeling. All the calculated Flory–Huggins interaction parameters showed positive values; furthermore, they were all above the critical Flory–Huggins interaction parameter value, which means that the PS/PMMA blends were immiscible. Both the addition of a block copolymer and the introduction of a shear field influenced the phase morphologies of the blends, while the degree of influence depended on the compositions of the blends. The study of PS/PMMA blends doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as their size, number and number density, but also the compositions of the blends. The effect of the surface roughness of the planes on the phase separation of the blends was also studied.  相似文献   

19.
Enhanced prostaglandin (PG) biosynthesis is a hallmark of inflammation, and interleukin-1 (IL), a proinflammatory cytokine, is a potent stimulus of PG production. We investigated the mechanisms of IL-1 alpha-enhanced PG synthesis in serum-stimulated mesangial cells. The rIL-1-stimulated increase in PGE2 synthesis was dose- and time-dependent and inhibited by both cycloheximide and actinomycin D. Phospholipase (PL) activity was increased 5- to 10-fold in acid extracts of rIL-1-treated cells as measured by arachidonate release from exogenous [14C]arachidonyl-phosphatidyl-ethanolamine. This induced phospholipase activity was Ca(2+)-dependent and inhibited by the PLA2 inhibitors, aristocholic acid, 7,7-dimethyl-5,8-eicosadienoic acid, and p-bromophenacylbromide, but not by the 1,2-diacylglycerol lipase inhibitor RHC 80267. The rIL-1-stimulated PLA2 had an alkaline pH optimum, and phosphatidylethanolamine was preferred over phosphatidylcholine as substrate. The PLA2 activity increased by rIL-1 was inhibited in cells coincubated with cycloheximide and was measurable after 6 h. A sensitive and specific solution hybridization assay demonstrated a coordinate time-dependent induction of non-pancreatic PLA2 mRNA expression which was increased at least 6-fold by 24 h. In whole cells, IL-1 had no effect on basal [3H]arachidonic acid release but vasopressin (1 microM)-stimulated release was potentiated 2- to 3-fold, suggesting that IL-1 may prime cells for increased PG synthesis via increased PLA2 activity. Thus IL-1 directly stimulates, as well as primes cells for, enhanced PG synthesis, in part, by increasing PLA2 activity through new synthesis of a non-pancreatic (Type II) PLA2.  相似文献   

20.
A novel antibacterial film was prepared by blending konjac glucomannan (KGM) and poly(diallydimethylammonium chloride) (PDADMAC) in an aqueous system. The antibacterial activity of the films against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces were measured by the halo zone test and the double plate method. The films exhibited an excellent antibacterial activity against B. subtilis and S. aureus but not against E. coli, P. aeruginosa or Saccharomyces. The miscibility, morphology, thermal stability, water vapour permeability and mechanical properties of the blend films were investigated by density determination, SEM, ATR-IR, XRD, DSC, TGA, WVA and tensile tests. The results of density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt%. Moreover, SEM and XRD confirmed the result. ATR-IR showed that strong intermolecular hydrogen bonds and electrostatic interactions occurred between KGM and PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04% and the water vapour permeability decreased when the PDADMAC content was 20 wt%. The thermal stability of the blends was higher than pure KGM. The blends should be good antibacterial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号