首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryanodine was shown to potentiate in a frequency-dependent manner a late phase of initial facilitation increasing the EPP amplitude for 15%-40% in a fixed interval 140-400 ms after the first EPP in the discharge. Dantrolene prevented the ryanodine induced increase of the late phase of facilitation, decreased 2-fold the amplitude and quantum content of single EPPs, augmented initial depression, blocked facilitation in 50% of synapses. Only in presence of dantrolene, the ryanodine's ability to increase the EPPs quantum content and early phase of the EPP facilitation in rhythmically active synapses, was revealed.  相似文献   

2.
Diabetes mellitus (DM) is a systemic disease characterized by changes in many organs and tissues, including the motor system. The processes of exo- and endocytosis in the motor nerve ending of the mouse diaphragm muscle during high-frequency activity in experimental alloxan model of DM were studied. Endplate potentials (EPPs) were recorded using intracellular microelectrodes during single and high-frequency (50 Hz, 1 min) stimulation. In mice with the experimental DM, the amplitude-time parameters of EPPs did not differ from those of the control; however, an increase in EPPs depression and a slower recovery were observed during high-frequency stimulation. Using an endocytosis marker FM 1-43, it was shown that in animals with experimental DM fluorescence intensity of the nerve terminals loaded with the dye by high-frequency stimulation increased that was prevented by 1-azakenpaullone (2 μM), an inhibitor of slow dynamin-1-mediated endocytosis. In addition, in the model animals, the destaining of the pre-loaded nerve terminals during high-frequency (50 Hz) stimulation slowed down. The obtained data indicate that in the experimental first type DM recycling of synaptic vesicles via long path becomes more pronounced and the mechanisms of the vesicular transport are impaired, which was confirmed by methods of mathematical modeling.  相似文献   

3.
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1?/?) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1?/? mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.  相似文献   

4.
In experiments on neuromuscular junctions in the frog m. cutaneous-pectoris, changes in the intensity and asynchronicity of transmitter release during high-frequency (10 and 50 sec-1) rhythmic stimulation of the motor nerve were investigated using extracellular recording. At low extracellular Ca2+ concentrations, rhythmic stimulation resulted in a gradual enlargement of the quantum content of end-plate currents (EPC), the so-called facilitation. The latter phenomenon was accompanied by an increase in the average value and variance of synaptic delays of single-quantum EPC, a shift of the main mode of their distribution towards greater values, and an increase in the latency of the nerve ending responses. The above-described changes reduce the magnitude of facilitation in the neuromuscular synapse.  相似文献   

5.
Endplate potentials (EPP) were recorded from the frog sartorius neuromuscular junction under conditions of low quantal content to study the effect of Ba2+, Sr2+, and Ca2+ on the changes in evoked transmitter release that occur during and after repetitive stimulation. The addition of 0.1-1 mM Ba2+ or Sr2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with 0.8-1.4 mM Sr2+, led to a greater increase in EPP amplitudes during and immediately after repetitive stimulation. These changes in release were analyzed in terms of the four apparent components of increased transmitter release that have previously been distinguished on the basis of their kinetic properties. The Ba2+-induced increase in EPP amplitudes was associated with an increase in the magnitude but not the time constant of decay of augmentation. Ba2+ had little effect on potentiation or the first and second components of facilitation. The Sr2+-induced increase in EPP amplitudes was associated with an increase in the magnitude and the time constant of decay of the second component of facilitation. Sr2+ had little effect on potentiation, augmentation, or the first component of facilitation. The selective effects of Ba2+ on augmentation and of Sr2+ on the second component of facilitation were reversible and could be obtained in the presence of the other ion. The addition of 0.1-0.3 mM Ca2+ to the bathing solution had little effect on potentiation, augmentation, or the two components of facilitation. These results provide pharmacological support for the proposal that there are four different components of increased transmitter release associated with repetitive stimulation and suggest that the underlying factors in the nerve terminal that give rise to these components can act somewhat independently of one another.  相似文献   

6.
Ca(2+)-induced Ca(2+) release (CICR) enhances a variety of cellular Ca(2+) signaling and functions. How CICR affects impulse-evoked transmitter release is unknown. At frog motor nerve terminals, repetitive Ca(2+) entries slowly prime and subsequently activate the mechanism of CICR via ryanodine receptors and asynchronous exocytosis of transmitters. Further Ca(2+) entry inactivates the CICR mechanism and the absence of Ca(2+) entry for >1 min results in its slow depriming. We now report here that the activation of this unique CICR markedly enhances impulse-evoked exocytosis of transmitter. The conditioning nerve stimulation (10-20 Hz, 2-10 min) that primes the CICR mechanism produced the marked enhancement of the amplitude and quantal content of end-plate potentials (EPPs) that decayed double exponentially with time constants of 1.85 and 10 min. The enhancement was blocked by inhibitors of ryanodine receptors and was accompanied by a slight prolongation of the peak times of EPP and the end-plate currents estimated from deconvolution of EPP. The conditioning nerve stimulation also enhanced single impulse- and tetanus-induced rises in intracellular Ca(2+) in the terminals with little change in time course. There was no change in the rate of growth of the amplitudes of EPPs in a short train after the conditioning stimulation. On the other hand, the augmentation and potentiation of EPP were enhanced, and then decreased in parallel with changes in intraterminal Ca(2+) during repetition of tetani. The results suggest that ryanodine receptors exist close to voltage-gated Ca(2+) channels in the presynaptic terminals and amplify the impulse-evoked exocytosis and its plasticity via CICR after Ca(2+)-dependent priming.  相似文献   

7.
L-type Ca2+-channel blockers, verapamil (5 μM) and nifedipine (10 μM), have increased the quantum composition of endplate potentials (EPP) and the level of induced rhythmic activity of neogenic synapses. L-type Ca2+-channel activator BAY K 8644 (1 μM) has a decreased mediator secretion level. Nifedipine (10 μM) has not changed the frequency and amplitude of diminutive EPPs in the dormant state or during potassium depolarization. Blocking of the prejunctional ryanodine receptor with ryanodine (10 μM) led to an increase in the single EPP quantum composition that was qualitatively similar to nifedipine and verapamil, but more marked, and also caused the reinforcement of mediator release during the rhythmic EPP salvo. Ryanodine receptor activation with ryanodine (1 μM) resulted in reduction of the quantum composition of single and rhythmic EPPs. This effect was partially prevented with nifedipine (10 μM).  相似文献   

8.
A.C. Wareham 《Life sciences》1978,22(4):321-328
Cyclic AMP increased the frequency of spontaneous miniature EPPs at the cockroach neuromuscular junction. A similar increase in miniature EPP frequency was seen on application of the phosphodiesterase inhibitors, theophylline and caffeine. A nonmethyl xanthine inhibitor, ICI 163197, was equally effective. No consistent alteration in the size of miniature potentials was produced. The potentiation occurred regardless of the initial frequency of miniature EPPs in bathing media containing different concentrations of potassium. The potentiation by cyclic AMP was reversible. The action of cyclic AMP at this glutaminergic synapse is compared with that reported at cholinergic synapses.  相似文献   

9.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

10.
The monovalent thallous ion (Tl) was evaluated at the frog end plate in vitro with intracellular microelectrodes. Recordings included end plate potentials (EPPs), and miniature end plate potentials (MEPPs). Replacement of extracellular potassium (K) by 2.5 mM Tl (a) caused increases in MEPP and EPP amplitudes, MEPP frequency, and quantal content, and (b) caused complete recovery of the EPP facilitation index at BAPTA-loaded nerve terminals. Tl's effects were reversible and concentration dependent, and persisted for > 3 h. The increase in MEPP frequency and its rate of decline due to Tl washout were more pronounced at 0 calcium (Ca)-2 mM EGTA than at 0.3 mM EGTA, suggesting that Tl's effects were not due to elevation of internal Ca. Unlike heavy metal ions reportedly capable of substituting for Ca, 0.2 mM Tl did not block, but further enhanced, elevated MEPP frequencies, occurring after nerve stimulation or in high K, to greater levels with barium (Ba) than with Ca. 200 nM omega-conotoxin (omega-CTX) blocked Tl's effect, indicating that Tl primarily entered the nerve terminal via Ca channels. A 50% reduction in sodium (Na) did not modify Tl's effect, although removal of K in the presence of 20 microM ouabain and 2.5 mM Tl caused an exaggerated increase in MEPP frequency, which decreased with a 50% reduction in Na. Based on the analysis, Tl neither substituted for Ca nor elevated internal Ca and Na, nor were its effects antagonized by ouabain; Tl increased quantal secretion, possibly by a fusogenic mechanism, after its entry into the nerve terminal.  相似文献   

11.
Miniature endplate potentials (MEPPs) were recorded from frog sartorious neuromuscular junctions under conditions of reduced quantal contents to study the effect of repetitive nerve stimulation on asynchronous (tonic) quantal transmitter release. MEPP frequency increased during repetitive stimulation and then decayed back to the control level after the conditioning trains. The decay of the increased MEPP frequency after 100-to 200-impulse conditioning trains can be described by four components that decayed exponentially with time constants of about 50 ms, 500 ms, 7 s, and 80 s. These time constants are similar to those for the decay of stimulation-induced changes in synchronous (phasic) transmitter release, as measured by endplate potential (EPP) amplitudes, corresponding, respectively, to the first and second components of facilitation, augmentation, and potentiation. The addition of small amounts of Ca2+ or Ba2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with Sr2+, led to a greater increase in the stimulation-induced increases in MEPP frequency. The Sr-induced increase in MEPP frequency was associated with an increase in the second component of facilitation of MEPP frequency; the Ba-induced increase with an increase in augmentation. These effects of Sr2+ and Ba2+ on stimulation-induced changes in MEPP frequency are similar to the effects of these ions on stimulation- induced changes in EPP amplitude. These ionic similarities and the similar kinetics of decay suggest that stimulation induced changes in MEPP frequency and EPP amplitude have some similar underlying mechanisms. Calculations are presented which show that a fourth power residual calcium model for stimulation-induced changes in transmitter release cannot readily account for the observation that stimulation- induced changes in MEPP frequency and EPP amplitude have similar time- courses.  相似文献   

12.
Balezina  O. P.  Bukiya  A. N. 《Neurophysiology》2003,35(2):75-81
In our experiments on mice, end-plate currents (EPC) evoked by stimulation of the phrenic nerve were intracellularly recorded in neuromuscular synaptic junctions of the phrenic muscle. We studied the effects of a specific blocker of ryanodine receptors, ryanodine (10 to 20 M), on the amplitude and time parameters of EPC under conditions of tetanic facilitation and depression of synaptic transmission at frequencies of stimulation of 4 to 200 sec-1. Ryanodine inhibited facilitation at stimulation frequencies of 7 to 70 sec-1 (with maximum effect at 20 sec-1) and accelerated depression. In the presence of ryanodine, an initial rundown of the EPC amplitude in the course of depression of transmission increased at high frequencies of stimulation (50 to 100 sec-1), whereas the EPC amplitude at the plateau level decreased already at low frequencies (4 to 7 sec-1). We concluded that the changes in facilitation and depression resulted from blocking of the presynaptic ryanodine receptors by ryanodine. It seems probable that calcium release from the calcium stores in murine motor terminals is a factor involved in the control of processes of transmitter secretion during short-term rhythmic activation of the junction.  相似文献   

13.
Intravenous heroin at 10 and 30 μg/kg produced an immediate increase in rates of lever pressing for electrical stimulation of the lateral hypothalamus, while 100 μg/kg produced brief suppression in some rats followed by reliable response rate increases in all rats. The duration of response facilitation increased with dose and corresponded to the duration of the inter-infusion interval found in self-administration experiments. These data indicate correspondence between the reinforcing and the self-stimulation facilitating effects of heroin in relation to dose and time course parameters, and fit with the view that narcotic facilitation of self-stimulation reflects the reinforcing value of the drugs.  相似文献   

14.
Summary Time course measurements of glycogen, lactate, creatine phosphate, the adenylates and ammonia contents were made during the transition from rest to various levels of activity in fish (Macrozoarces americanus) white muscle. The muscle was perturbed by direct electrical stimulation resulting in sustained tetanus, 60 contractions/min or 20 contractions/min. Increased ATP demand was invariably associated with decreases in creatine phosphate followed by increases in lactate levels. The contribution of creatine phosphate to anaerobic energy production was equivalent to that of anaerobic glycolysis. In addition, decreases in creatine phosphate content may play an important role in the facilitation of glycolytic flux presumably by relief of inhibition of phosphofructokinase. Under some conditions the work transition was associated with an initial transient increase in ATP content which could not be accounted for by decreases in ADP and AMP levels. Furthermore, ammonia content was noted to oscillate during the work period, a feature which is fundamentally different from that which occurs in mammalian muscle.  相似文献   

15.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

16.
Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important methodological implications.  相似文献   

17.
Direct cortical responses (DCR) to a series of electrical stimuli with a frequency of I to 50 per second with 10 to 20 pulses in each series were studied in chronic experiments on dogs. The nature of cortical responses differed, depending on stimulation parameters. As the stimulation frequency increased, the amplitude and number of late DCR components decreased, and with further increase of frequency, the early components decreased as well. The following types of responses were revealed: recruiting, intermittent and decremental. As the stimulation frequency increased all the three types of responses could be obtained in one and the same cortical point. Recruiting was not typical of high-amplitude and multi-component DCR with a long phase of depression of initial negativity and slightly pronounced short-term subsequent facilitation, while the intermittent type of response appeared at lower frequencies than in other dogs (5 to 10 per sec). A decremental type of response was observed in all the dogs at a stimulation frequency higher than 30 per sec. The duration of the series of after-discharges to a burst of electrical pulses depended on the pattern of the DCR to a single stimulus and on the intensity and frequency of stimulation. With similar parameters of stimulation, the greater the amplitude and the longer the duration of the slow negative DCR wave, the longer the period of after-discharges following a series of stimuli.  相似文献   

18.
The nitric oxide (NO) precursor L-arginine was found to decrease the amplitude and the quantum content of the EPPs and to increase the amplitude of the AP third deflection in the frog neuromuscular junction of the m. cutaneous pectoris preparation. Inhibitor of the NO synthase NG-nitro-L-arginine methylester exerted opposite effects. The data obtained suggest that endogenous NO is produced in the neuromuscular synapse area and can modify the work of potassium ion channels.  相似文献   

19.
The neuronal activity in spinal cord in response to electrical or adequate stimulation of afferent fibres increases extracellular K+ activity. The increase during a stimulation can reach 9-10 mM (so-called ceiling level) and persists for some time even when a stimulation is discontinued. The activation of a neuronal Na-K pump is a limiting factor in stimulation-evoked increase in extracellular K+ activity and in the time course of its recovery to the resting level. Drugs that affect either the neuronal activity (picrotoxin, strychnine, GABA, 5-HT) or activity of Na-K ATPase (oubain, naloxone, morphine, enkephalins) substantially change the K+ transience. Repetitive electrical stimulation of low threshold cutaneous afferents at frequency 1-100 Hz induced transient shrinkage of extracellular space in spinal dorsal horns by 5-75%. The increase in extracellular K+ activity depolarizes the membranes of neurones, glial cells, and primary afferent fibres and may eventually lead to either facilitation or inhibition of synaptic transmission. It is also suggested that the transient poststimulation changes in extracellular volume may alter synaptic potency in spinal cord.  相似文献   

20.
In experiments on alert rabbits high frequency stimulation of the CA1 field of the dorsal hippocampus reduced the peak latency of the main negative component of the evoked potential (EP) to a light flash in the sensorimotor and occipital tests areas of the cerebral cortex. A single stimulation of the same part of the hippocampus resulted in a gradually developing facilitation of secondary negativity of the EP 5th component, predominantly in the sensorimotor cortex. Investigation of neuronal responses in the same cortical areas to a stimulation of the CA1 field with different parameters has shown that the effects of EP modulation are due to dynamic reorganizations of cortical neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号