首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubation at 366 mOsmol kg-1 was required to obtain a high growth rate of AFP-27 cells at 440 mOsmol kg-1 when the cells were subjected to a two-step increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg-1 and then to 440 mOsmol kg-1. The time length for the physiological adaptation of the cells to 366 mOsmol kg-1 was consequently estimated to be 6 h. Osmotic pressure during batch cultivation was gradually increased from 300 mOsmol kg-1 to 400 mOsmol kg-1 with an adaptation time of at least 6 h. The specific growth rates following a gradual increase of osmotic pressure were higher than those at a constant osmotic pressure of 400 mOsmol kg-1, while the specific monoclonal antibody production rate increased with the increase in the mean osmotic pressure. As a result, the cells grown under a gradual increase of osmotic pressure produced higher amounts of monoclonal antibodies than did those grown under constant osmotic pressure.  相似文献   

2.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

3.

Background and Aims

Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium.

Methods

Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration–rehydration.

Key Results

The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for <1 s, led to the formation of numerous exocytotic and osmocytic vesicles visualized through light and confocal microscopy. In contrast, after application of a progressive osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock.

Conclusions

It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock.  相似文献   

4.
The influence of rehydration conditions on the recovery of Escherichia coli K-12 was studied. The results showed that the osmotic pressure gradient of rehydration shock realized before plating greatly affected cell viability. When rehydration occurred quickly from an hyperosmotic level of 133 MPa in glycerol solution before slow rehydration by plating on an agar surface to reach initial osmotic pressure (1.4 MPa), bacterial viability was strongly related to the intensity of the hypo-osmotic gradient used. Rehydration to 107 MPa resulted in a survival ratio of 41%, whereas strong rehydration to 1.4 MPa resulted in only 0.7% survival. These studies also demonstrated the influence of the rehydration kinetic on cell recovery. An optimal rehydration rate of 0.136 MPa x s(-1) increased cell recovery by a factor of 40 when compared with the faster and slower rates of 131.6 MPa x s(-1) and 0.006 MPa x s(-1), respectively.  相似文献   

5.
张永平 《西北植物学报》2011,31(12):2503-2508
以‘农大108’玉米种子为材料,采用不同浓度(50、100、150、200、250、300、350 mg·L-1)的多效唑溶液进行浸种处理,研究其对渗透胁迫(20% PEG-6000)下玉米种子萌发、根系生长和根系边缘细胞数目、活性及黏胶层厚度的影响.结果表明:与对照相比,渗透处理抑制了玉米种子露白与根系生长,增加了边缘细胞数目与黏胶层厚度.预先用多效唑浸种后再进行渗透胁迫处理进一步降低了主根的长度,但增加侧根的生长而使根系鲜重增加,进一步增加了根边缘细胞黏胶层厚度,在一定程度上减少了由于渗透胁迫造成的边缘细胞数目的增加程度.无论是渗透处理还是预先用多效唑浸种处理对边缘细胞活性的影响均不大.可见,多效唑浸种能够增加玉米根系的抗旱能力与边缘细胞黏胶层厚度的增加有关,而与边缘细胞数目、活性的关系不大;多效唑浸种溶液的适宜浓度范围为200~250 mg·L-1.  相似文献   

6.
The theoretical calculation about the dependence of the ionic current density across the cellular membrane on the intensity of the magnetic field applied to cellular tissue is presented. This interaction induces changes in the magnitude of the ionic current density across the cellular membrane and in the ionic concentration, and it also causes alterations in the osmotic pressure and in the capacity of the cellular tissues to absorb water. The magnetic field dependence of the ionic current densities J(p) (B) (positive ions) and J(n) (B) (negative ions), the membrane conductivity sigma (B), the ionic concentration in both membrane sides c(B), the osmotic pressure pi (B), and the water uptake rate by seeds k(w) (B) are presented. The increase in water uptake rate due to the applied magnetic field may be the explanation of the recently reported increase in the germination speed of the seeds treated with stationary magnetic fields.  相似文献   

7.
To investigate the effects of lactate on cell growth and antibody production, a new method of maintaining the lactate concentration constant in a fed-batch culture is described. When the pH was initially adjusted by sodium hydroxide, the specific growth rate decreased and specific death rate increased with an increase of lactate concentration. To investigate whether the inhibition was due to the lactate concentration itself or to the osmotic pressure, the effect of the osmotic pressure adjusted by sodium chloride was compared with that of sodium lactate. When the osmotic pressure was adjusted to same condition as that of sodium lactate using sodium chloride, the specific growth data showed the same degree of growth inhibition. It was thus evident that the inhibition to cell growth was mainly due to osmotic pressure while lactate production from glucose was found to be inhibited by the lactate itself compared with sodium chloride. The specific antibody production rate had a maximum value within a certain range of lactate concentration. Moreover, specific antibody production rate had a unified relationship with the kinetic parameter mu, in spite of the different causes of inhibition by lithium lactate and sodium lactate. A certain "trade-off" relationship between growth and antibody production existed at higher growth rates.  相似文献   

8.
A visualization chamber has been developed to analyze potential correlations between osmotic step increase on yeasts and the resultant cell volume decreases. Image analysis was used to characterize the step increases in the center of the chamber and to measure the changes in the cell volume. Step increases of different intensities have been performed on the yeast Saccharomyces cerevisiae. This device has allowed the kinetics of the volumetric evolution of the cells to be observed. The water exit flow rate from the cell was found to occur in the first 10 s following the hypertonic step change. Comparison of the time constants of the chamber and of the cell volume variations allowed to conclude that the time constant of the water transfer across the membrane was short (about 1 s). (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
Marine, estuarine and freshwater isolates of Caloglossa leprieurii (Montagne) J. Agardh exhibit a high salinity tolerance, reflected by broad cell viability and growth rate. Osmotic adjustment is shown to rely to a large extent on ion-transport systems, with K+ and Cl- accumulated in osmotically- significant quantities and active Na+ extrusion. The ion concentrations contribute a large proportion (67–94%) to internal osmotic pressure. The concentration of the organic osmolyte mannitol in all populations was strongly salinity dependent. Mannitol made a lower contribution to the internal osmotic pressure, when compared to ion concentrations, but nonetheless represented an important proportion of the internal osmolality. The response of the three isolates is discussed in relation to the salinity of their respective environments.  相似文献   

10.
In the first experiment, osmotic pressure of semen and seminal plasma in a semen sample from each of the 20 mature Nili-Ravi buffalo bulls was determined. In the second experiment, effects of osmotic pressure on motility (%), plasma membrane integrity (%) and viability (%) in fresh and frozen-thawed semen samples from each of the seven mature Nili-Ravi buffalo bulls was determined. In the first experiment, seminal plasma was harvested by centrifuging semen at 400 × g for 10 min at 37°C and osmotic pressure was determined using an osmometer. In the second experiment, motility (%) was assessed in fresh and frozen-thawed (37°C for 30 s) semen samples using a phase-contrast microscope (×400). Plasma membrane integrity (%) was determined by mixing 50 μl each of fresh and frozen-thawed semen with 500 μl of solution having an osmotic pressure of 50, 100, 150, 190 or 250 mOsm/l (hypotonic treatments of fructose + sodium citrate) and incubating at 37°C for 1 h. Viability (%) of fresh and frozen-thawed spermatozoa before and after challenging them to osmotic pressure (hypotonic treatments) was assessed using supravital stain under a phase-contrast microscope (×400). In the first experiment, the mean ± s.e. osmotic pressures of the buffalo semen and seminal plasma were 268.8 ± 1.17 and 256.0 ± 1.53 mOsm/l, respectively. In the second experiment, motility (%) decreased (P < 0.05) in frozen-thawed semen samples as compared with fresh semen (60.1 ± 1.34 v. 81 ± 1.57, respectively). The plasma membrane integrity (%) and magnitude of osmotic stress in fresh and frozen-thawed semen samples was higher (P < 0.05) at 50, 100, 150 and 190 mOsm/l as compared with 250 mOsm/l. Loss of viability (%) in fresh and frozen-thawed semen samples was higher (P < 0.05) at 50 mOsm/l (59% in fresh, 70% frozen thawed) as compared with other osmotic pressures, while it was lowest at 250 mOsm/l (4.1% for fresh, 9.7% frozen thawed). In conclusion, osmotic pressure of Nili-Ravi buffalo semen and seminal plasma is determined. Furthermore, variation in osmotic pressure below 250 mOsm/l is not favorable to fresh and frozen-thawed buffalo spermatozoa.  相似文献   

11.
The effect of electroporation on Dunaliella tertiolecta at constant osmotic pressure (or water activity) was investigated. The following metabolic and physiological parameters were determined: extracellular and intracellular glycerol content, soluble protein content, photosynthetic oxygen evolution, mitochondrial oxygen uptake, cell volume and cell density. Electroporation conditions are described that released about 10% of intracellular glycerol to the external medium with minimal apparent effects on metabolism. Glycerol release originated from most cells rather than by total rupture of a small proportion of cells. Cell volume, measured on motile cells by video microscopy, reduced by 23% immediately after electroporation. Cell density did not increase. The uptake of mannitol, the major solute in the electroporation medium, was less than 20% of glycerol release. Following electroporation, the intracellular glycerol content and the cell volume both returned to pre-electroporation values after about 30min. Because the cells were maintained at constant external osmotic pressure throughout the procedure, it is concluded that the regulatory mechanism responsible for setting the intracellular glycerol content does not sense external osmotic pressure per se. These findings are consistent with a mechanism that senses a parameter linked directly to cell volume to set the intracellular glycerol content.  相似文献   

12.
The influence of the osmotic pressure on the viability of yeast cells was studied in batch processes. It could be found, that the viability is a function of the total osmotic pressure obtained by adding the partial osmotic values of the principal ingredients saccharose, ethanol and salts dissolved in the medium. At optimum process conditions (pH, T, etc.) the cells can tolerate the osmotic pressure up to fixed value π1. Above π1 the viability decreases linearly and upward of a second threshold value π2 nonlinearly. In the case of the used strain Saccharomyces cerevisiae Hansen Sc 5 the values of the both points are π1 = 25 atm and π2 = 47 atm.  相似文献   

13.
Under water stress conditions, induced by mannitol solutions (0 to 0.66 M ) applied to the apical 12 mm of intact roots of Zea mays L. (cv. LG 11), a growth inhibition, a decrease in the osmotic potential of the cell sap and a significant accumulation of abscisic acid (ABA) were observed. When the roots were placed in a humid atmosphere after the stress, the growth rate increased again, even if elongation had been totally inhibited. Under a stress corresponding to an osmotic potential of -1.09 MPa in the solution, growth was totally inhibited, which means that the root cell turgor pressure was reduced to the yield threshold. These conditions led to the largest accumulation of ABA. The effect of water stress on the level of ABA was studied for three parts of the root. The greatest increase in ABA (about 10 fold) was obtained in the growth zone and this increase was apparently independent of the hydrolysis of the conjugated form. With a mannitol treatment of 1 h equivalent to a stress level of -1.39 MPa, a 4-fold increase in ABA efflux into the medium was obtained. These results suggest that there are interactions between water stress, root growth, osmotic potential and the ABA level. The growth under conditions of stress and the role of endogenous ABA in the control of plant metabolism, specially in the growth zone, are discussed.  相似文献   

14.
A new micromanipulation technique which has previously been used to measure the mechanical properties of single animal cells has now been applied to yeast cells. In this study this technique was used to measure yeast cell strength and cell size across a 2l batch fermentation. Alternatively the cell size could also be determined using a Coulter counter while cell measurement was diluted with a conducting fluid (Isoton II). For the cell strength, it was found that the osmotic pressure of diluents did affect cell strength. However, it was also found that there was no significant effect of osmotic pressure of diluents on cell size whether a Coulter counter or micromanipulation was used for measurement. Micromanipulation has been shown to be a powerful technique for measuring the mechanical properties of yeast cells and it will be very useful for studying their behaviour in cell disruption equipment, e.g. high-pressure homogenizers.  相似文献   

15.
细菌原生质体制备和再生是研究细胞融合的前提条件,但关于其原生质体形成及再生的最适条件迄今尚缺乏系统的研究。再生率不高,且不稳定。本文研究了有关诸因素对供试菌株原生质体化及其活性的影响,尤其是提高再生率的措施。试验所用材料,菌株B.Subtilis Ki-2-132(Thr~-,Val~-,Ile~-,Str~+)由中国科学院遗传所赠送;溶菌酶由汉口蛋厂1981  相似文献   

16.
The hemolymph osmotic pressure of male Heliothis virescens last instar larvae and pupae can be correlated with the state of spermatogenesis: intermediate (approx. 325 mOsm/kg) osmotic pressures are found in pre-meiotic animals, low (approx. 300 mOsm/kg) osmotic pressures characterize meiosis and elongation, and high (approx. 370 mOsm/kg) osmotic pressures, characterize the tests of diapausing pupae, where mature sperm have disappeared and only pre-meiotic sperm are found. In vitro studies show that, as the osmotic pressure of the medium is increased, spermatogenesis is inhibited and the survival of pre-meiotic cysts is enhanced. It is proposed that the osmotic pressure of the hemolymph plays a role in spermatogenesis and in the preservation of immature cysts during diapause.  相似文献   

17.
Summary Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.  相似文献   

18.
Yeasts are often exposed to variations in osmotic pressure in their natural environments or in their substrates when used in fermentation industries. Such changes may lead to cell death or activity loss. Previous work by our team has allowed us to relate the mortality of cells exposed to a combination of thermal and osmotic treatments to leakage of cellular components through an unstable membrane when lipid phase transition occurs. In this study, yeast viability was measured after numerous osmotic and thermal treatments. In addition, the fluidity of yeast membranes was assessed according to a(w) and temperature by means of 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy measurement. The results show that there is a negative correlation between the overall fluidity variation undergone by membranes during treatments and yeast survival. Using a diagram of membrane fluidity according to a(w) and temperature, we defined dehydration and rehydration methods that minimize fluidity fluctuations, permitting significantly increased yeast survival. Thus, such membrane fluidity diagram should be a potential tool for controlling membrane state during dehydration and rehydration and improve yeast survival. Overall fluidity measurements should now be completed by accurate structural analysis of membranes to better understand the plasma membrane changes occurring during dehydration and rehydration.  相似文献   

19.
The osmotic tolerance of cells of Saccharomyces cerevisiae as a function of glycerol concentration and temperature has been investigated. Results show that under isothermal conditions (25 degrees C) cells are resistant (94% viability) to hyperosmotic treatment at 49.2 MPa. A thigher osmotic pressure, cell viability decreases to 25% at 99 MPa. Yeast resistance to high osmotic stress (99 Mpa) is enhanced at low temperatures (5-11 degrees C). Therefore, the temperature at which hyperosmotic pressure is achieved greatly affects cell viability. These results suggest that temperature control is a suitable means of enhancing cell survival in response to osmotic dehydration.  相似文献   

20.
Summary The tolerances of a cell line (IMC-HZ-1) from a moth,Heliothis zea, for the monovalent cations Na+ and K+ were defined. Cells shifted to media containing more than 70mm of K+ showed decreased growth rates. No evidence was obtained for Na+ toxicity. The osmotic pressure tolerances were influenced by the K+ concentration of the medium. The richer the medium was in K+, the narrower was the spectrum of osmotic pressure tolerance. Once the limit of K+ tolerance was exceeded, the rate of decline of growth was linear with respect to further increases in K+. This rate of decline was independent of osmotic pressure. The initial responses of cells during one subculture (2 to 4 population doublings) in media differing from the standard medium (used to maintain the cell line) were not reliable indicators of the growth potential of the cells. Continued subculture in such media resulted in an upward trend in population growth rates in most cases. This investigation was supported by U. S. Public Health Service Research Grant no. AI 09914 from the National Institute of Allergy and Infectious Diseases. This is Paper no. 8637, Scientific Journal Series, Minnesota Agricultural Experiment Station. The material is part of the dissertation of T. J. K. presented for the Ph.D. degree at the University of Minnesota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号