首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shioi Y  Takamiya K 《Plant physiology》1992,100(3):1291-1295
The composition of chlorophyll-precursor pigments, particularly the contents of monovinyl (MV) and divinyl (DV) protochlorophyllides (Pchlides), in etiolated tissues of higher plants were determined by polyethylene-column HPLC (Y. Shioi, S. I. Beale [1987] Anal Biochem 162: 493-499), which enables the complete separation of these pigments. DV-Pchlide was ubiquitous in etiolated tissue of higher plants. From the analyses of 24 plant species belonging to 17 different families, it was shown that the concentration of DV-Pchlide was strongly dependent on the plant species and the age of the plants. The ratio of DV-Pchlide to MV-Pchlide in high DV-Pchlide plants such as cucumber and leaf mustard decreased sharply with increasing age. Levels of DV-Pchlide in Gramineae plants were considerably lower at all ages compared with those of other plants. Etiolated tissues of higher plants such as barley and corn were, therefore, good sources of MV-Pchlide. Absorption spectra of the purified MV- and DV-Pchlides in ether are presented and compared.  相似文献   

2.
We present the nucleotide and deduced amino acid sequences of four contiguous bacteriochlorophyll synthesis genes from Rhodobacter capsulatus. Three of these genes code for enzymes which catalyze reactions common to the chlorophyll synthesis pathway and therefore are likely to be found in plants and cyanobacteria as well. The pigments accumulated in strains with physically mapped transposon insertion mutations are analyzed by absorbance and fluorescence spectroscopy, allowing us to assign the genes as bchF, bchN, bchB, and bchH, in that order. bchF encodes a bacteriochlorophyll alpha-specific enzyme that adds water across the 2-vinyl group. The other three genes are required for portions of the pathway that are shared with chlorophyll synthesis, and they were expected to be common to both pathways. bchN and bchB are required for protochlorophyllide reduction in the dark (along with bchL), a reaction that has been observed in all major groups of photosynthetic organisms except angiosperms, where only the light-dependent reaction has been clearly established. The purple bacterial and plant enzymes show 35% identity between the amino acids coded by bchN and chlN (gidA) and 49% identity between the amino acids coded by bchL and chlL (frxC). Furthermore, bchB is 33% identical to ORF513 from the Marchantia polymorpha chloroplast. We present arguments in favor of the probable role of ORF513 (chlB) in protochlorophyllide reduction in the dark. The further similarities of all three subunits of protochlorophyllide reductase and the three subunits of chlorin reductase in bacteriochlorophyll synthesis suggest that the two reductase systems are derived from a common ancestor.  相似文献   

3.
Three open reading frames in the Rhodobacter capsulatus photosynthesis gene cluster, designated F0, F108, and F1025, were disrupted by site-directed mutagenesis. Mutants bearing insertions in these reading frames were defective in converting protoporphyrin IX to magnesium-protoporphyrin monomethyl ester, protochlorophyllide to chlorophyllide a, and magnesium-protoporphyrin monomethyl ester to protochlorophyllide, respectively. These results demonstrate that the genes examined most likely encode enzyme subunits that catalyze steps common to plant and bacterial tetrapyrrole photopigment biosynthetic pathways. The open reading frames were found to be part of a large 11-kilobase operon that encodes numerous genes involved in early steps of the bacteriochlorophyll a biosynthetic pathway.  相似文献   

4.
The Chlamydomonas reinhardtii chloroplast gene chlL (frxC) is shown to be involved in the light-independent conversion of protochlorophyllide to chlorophyllide. The polypeptide encoded by chlL contains a striking 53% amino acid sequence identity with the bacteriochlorophyll (bch) biosynthesis bchL gene product in the photosynthetic bacterium Rhodobacter capsulatus. In a previous analysis, we demonstrated that bchL was involved in light-independent protochlorophyllide reduction, thereby implicating chlL in light-independent protochlorophyllide reduction in photosynthetic eukaryotes. To perform a functional/mutational analysis of chlL, we utilized particle gun-mediated transformation to disrupt the structural sequence of chlL at its endogenous locus in the chloroplast genome of Chlamydomonas. Transformants for which the multicopy chloroplast genome was homoplasmic for the disrupted chlL allele exhibit a "yellow-in-the-dark" phenotype that we demonstrated to be a result of the dark accumulation of protochlorophyllide. The presence of a chlL homolog in distantly related bacteria and nonflowering land plants, which are thought to be capable of synthesizing chlorophyll in the dark, was also demonstrated by cross-hybridization analysis. In contrast, we observed no cross-hybridization of a probe of chlL to DNA samples from representative angiosperms that require light for chlorophyll synthesis, in support of our conclusion that chlL is involved in light-independent chlorophyll biosynthesis. The role of chlL in protochlorophyllide reduction as well as recent evidence that both light-independent and light-dependent protochlorophyllide reductases may be of bacterial origin are discussed.  相似文献   

5.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110–114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.  相似文献   

6.
Nomata J  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2006,580(26):6151-6154
Dark-operative protochlorophyllide reductase (DPOR) in bacteriochlorophyll biosynthesis is a nitrogenase-like enzyme consisting of L-protein (BchL-dimer) as a reductase component and NB-protein (BchN-BchB-heterotetramer) as a catalytic component. Metallocenters of DPOR have not been identified. Here we report that L-protein has an oxygen-sensitive [4Fe-4S] cluster similar to nitrogenase Fe protein. Purified L-protein from Rhodobacter capsulatus showed absorption spectra and an electron paramagnetic resonance signal indicative of a [4Fe-4S] cluster. The activity quickly disappeared upon exposure to air with a half-life of 20s. These results suggest that the electron transfer mechanism is conserved in nitrogenase Fe protein and DPOR L-protein.  相似文献   

7.
Etioplasts and developing chloroplasts were isolated from etiolated Cucumis cotyledons that were irradiated with white fluorescent light for various periods of time. The endogenous porphyrins and phorbins of the isolated plastids were partitioned between hexane, hexane-extracted aqueous acetone and a lipoprotein precipitate. Spectrofluorometric determinations were performed on these fractions without further fractionation. For quantitative determinations, the fluorescence amplitudes of the various fluorescent components were corrected for fluorescence emission overlap by sets of simultaneous equations. Developing chloroplasts contained endogenous amounts of the following metabolites: Protochlorophyllide, protochlorophyllide ester, Mg-protoporphyrin monoester + longer-wavelength metalloporphyrins and protoporphyrin. The protochlorophyll pool consisted mainly of protochlorophyllide. The latter was heterogeneous and consisted of at least two chemically related protochlorophyllides. In contrast to developing chloroplasts, irradiated etioplasts contained mostly protochlorophyllide ester and smaller amounts of protochlorophyllide. Upon incubation of developing chloroplasts and irradiated etioplasts with δ-aminolevulinic acid and cofactors (coenzyme A, glutathione, adenosine triphosphate, nicotinamide adenine dinucleotide, methyl alcohol, magnesium, potassium and phosphate), a net synthesis and accumulation of protochlorophyllide, Mg-protoporphyrin monoester + longer-wavelength metalloporphyrins, protoporphyrin, coproporphyrin and uroporphyrin were observed. Small amounts of zinc-coproporphyrin and zinc-uroporphyrin were also formed. In some experiments a net synthesis of protochlorophyllide ester was also observed. This report represents the first account of the unambiguous net synthesis of protochlorophyll in vitro.  相似文献   

8.
A cell free system prepared from etiolated cucumber (Cucumis sativus, L) in tris-sucrose buffer is able to incorporate delta-aminolevulinic acid-4- (14)C into the two components of protochlorophyll: protochlorophyllide and protochlorophyllide ester. The activity is associated with the etioplasts. Optimal incorporation is obtained at pH 7.7. For the formation of protochlorphyllide ester, oxygen, reduced glutathione, methyl alcohol, magnesium, inorganic phosphate, and nicotinamide adenine dinucleotide are required. For the formation of (14)C-protochlorophyllide, adenosine triphosphate, and coenzyme A are required in addition to the above. The requirement for methyl alcohol is highly specific, and the methyl group appears to be incorporated into the protochlorophyll molecules. A biosynthetic scheme resulting in the parallel production of (14)C-protochlorophyllide and (14)C-protochlorophyllide ester from (14)C-Mg protoporphyrin monoester is presented.  相似文献   

9.
The bacteriochlorophyll biosynthesis gene, bchM, from Rhodobacter capsulatus was previously believed to code for a polypeptide involved in formation of the cyclopentone ring of protochlorophyllide from Mg-protoporphyrin IX monomethyl ester. In this study, R. capsulatus bchM was expressed in Escherichia coli and the gene product was subsequently demonstrated by enzymatic analysis to catalyze methylation of Mg-protoporphyrin IX to form Mg-protoporphyrin IX monomethyl ester. Activity required the substrates Mg-protoporphyrin IX and S-adenosyl-L-methionine. 14C-labeled product was formed in incubations containing 14C-methyl-labeled S-adenosyl-L-methionine. On the basis of these and previous results, we also conclude that the bchH gene, which was previously reported to code for Mg-protoporphyrin IX methyltransferase, is most likely involved in the Mg chelation step.  相似文献   

10.
An homology model of protochlorophyllide reductase (POR) from Synechocystis sp. was constructed on a template from the tyrosine-dependent oxidoreductase family. The model showed characteristics appropriate to a globular, soluble protein and was used to generate a structure of the ternary complex of POR, nicotinamide adenine dinucleotide phosphate (NADPH), and protochlorophyllide. The POR ternary model was validated by mutagenesis experiments involving predicted coenzyme-binding residues and by chemical modification experiments. A core tryptophan residue was shown to be responsible for much of the protein's fluorescence. Both quenching of this residue by coenzyme and fluorescence resonance energy transfer (FRET) from the protein to the coenzyme allowed the binding constant of NADPH to be determined. Replacement of this residue by Tyr gave an active mutant with approximately halved fluorescence and a negligible FRET signal, consistent with the role of this residue in energy transfer to the NADPH at the active site and with the model. The mechanism of the enzyme is discussed in the context of the model and semiempirical molecular orbital calculations.  相似文献   

11.
Schoefs  B. 《Photosynthetica》2000,36(4):481-496
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.  相似文献   

12.
During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit [4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit [4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.  相似文献   

13.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing D-ring reduction of protochlorophyllide in chlorophyll and bacteriochlorophyll biosynthesis. DPOR consists of two components, L-protein and NB-protein, which are structurally related to nitrogenase Fe-protein and MoFe-protein, respectively. Neither Fe-protein nor MoFe-protein is expressed as an active form in Escherichia coli due to the requirement of many Nif proteins for the assembly of the metallocenter and the maturation specific for diazotrophs. Here we report the functional expression of DPOR components from Rhodobacter capsulatus in Escherichia coli. Two overexpression plasmids for L-protein and NB-protein were constructed. L-protein and NB-protein purified from E. coli showed spectroscopic properties similar to those purified from R. capsulatus. L-protein and NB-protein activities were evaluated using a crude extract of E. coli overexpressing NB-protein and L-protein, respectively. Specific activities of the purified L-protein and NB-protein were 219+/-38 and 52.8+/-5.5 nmolChlorophyllide min(-1) mg(-1), respectively, which were even higher than those of L-protein and NB-protein purified from R. capsulatus. These E. coli strains provide a promising system for structural and kinetic analyses of the nitrogenase-like enzymes.  相似文献   

14.
B. Schoefs 《Photosynthetica》1999,36(4):481-496
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.  相似文献   

16.
The bchA locus of Rhodobacter capsulatus codes for the chlorin reductase enzyme in the bacteriochlorophyll synthesis pathway. Previous work has suggested that this locus might encompass a single gene. We have sequenced the bchA locus and found it to contain three coding segments, which we designate bchX, bchY, and bchZ. Each coding segment contains its own translational initiation sequence and follows codon utilization patterns consistent with those of previously published R. capsulatus genes. When various regions of the bchA locus and flanking sequences were subcloned into an expression vector and expressed in Escherichia coli, the three coding segments were all expressed as separate peptides. Finally, conservation of amino acid sequences between bchX and a subunit of the protochlorophyllide reductase (bchL, 34% identity) and the nitrogenase Fe protein (nifH, 30 to 37% identity) suggests structural and mechanistic commonalities among all three proteins.  相似文献   

17.
Heyes DJ  Hunter CN 《Biochemistry》2004,43(25):8265-8271
The chlorophyll biosynthetic enzyme protochlorophyllide reductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) into chlorophyllide (Chlide) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. POR is a light-driven enzyme, which has provided a unique opportunity to trap intermediates and identify different steps in the reaction pathway by initiating catalysis with illumination at low temperatures. In the present work we have used a thermophilic form of POR, which has an increased conformational rigidity at comparable temperatures, to dissect and study the final stages of the reaction where protein dynamics are proposed to play an important role in catalysis. Low-temperature fluorescence and absorbance measurements have been used to demonstrate that the reaction pathway for this enzyme consists of two additional "dark" steps, which have not been detected in previous studies. Product binding studies were used to show that spectroscopically distinct Chlide species could be observed and were dependent on whether the NADPH or NADP(+) cofactor was present. As a result we have been able to identify the intermediates that are observed during the latter stages of the POR catalytic cycle and have shown that they are formed via a series of ordered product release and cofactor binding events. These events involve release of NADP(+) from the enzyme and its replacement by NADPH, before release of the Chlide product has taken place. Following release of Chlide, the subsequent binding of Pchlide allows the next catalytic cycle to proceed.  相似文献   

18.
Protochlorophyllide reductase catalyzes the reductive formation of chlorophyllide from protochlorophyllide during biosynthesis of chlorophylls and bacteriochlorophylls. The light-independent (dark) form of protochlorophyllide reductase plays a key role in the ability of gymnosperms, algae, and photosynthetic bacteria to green (form chlorophyll) in the dark. Genetic and sequence analyses have indicated that dark protochlorophyllide reductase consists of three protein subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the reductive formation of ammonia from dinitrogen. However, unlike the well characterized features of nitrogenase, there has been no previous biochemical characterization of dark protochlorophyllide reductase. In this study, we report the first reproducible demonstration of dark protochlorophyllide reductase activity from purified protein subunits that were isolated from the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus. Two of the three subunits (Bchl and BchN) were expressed in R. capsulatus as S tag fusion proteins that facilitated affinity purification. The third subunit (BchB) was co-purified with the BchN protein indicating that BchN and BchB proteins form a tight complex. Dark protochlorophyllide reductase activity was shown to be dependent on the presence of all three subunits, ATP, and the reductant dithionite. The similarity of dark protochlorophyllide reductase to nitrogenase is discussed.  相似文献   

19.
Klement H  Oster U  Rüdiger W 《FEBS letters》2000,480(2-3):306-310
Dark-grown angiosperm seedlings lack chlorophylls, but accumulate protochlorophyllide a complexed with the light-dependent enzyme NADPH:protochlorophyllide oxidoreductase. Previous investigators correlated spectral heterogeneity of in vivo protochlorophyllide forms and a shift of chlorophyllide forms from 680 to 672 nm (Shibata shift) occurring after irradiation, with intact membrane structures which are destroyed by solubilization. We demonstrate here that the various protochlorophyllide forms and the Shibata shift which disappear upon solubilization are restored if the reconstituted complex is treated with plastid lipids and 80% (w/v) glycerol. We hypothesize that the lipids can form a cubic phase and that this is the precondition in vitro and in vivo for the observed spectral properties before and after irradiation.  相似文献   

20.
Dark-grown angiosperm seedlings lack chlorophylls, but accumulate protochlorophyllide a complexed with the light-dependent enzyme NADPH:protochlorophyllide oxidoreductase. Previous investigators correlated spectral heterogeneity of in vivo protochlorophyllide forms and a shift of chlorophyllide forms from 680 to 672 nm (Shibata shift) occurring after irradiation, with intact membrane structures which are destroyed by solubilization. We demonstrate here that the various protochlorophyllide forms and the Shibata shift which disappear upon solubilization are restored if the reconstituted complex is treated with plastid lipids and 80% (w/v) glycerol. We hypothesize that the lipids can form a cubic phase and that this is the precondition in vitro and in vivo for the observed spectral properties before and after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号