首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在硬骨鱼类,生长激素的合成是由从下丘脑分泌的神经内分泌因子和由垂体及其他外周器官分泌的调节因子来调控的.从细胞水平上阐明这些调控因子在脑垂体的生长激素分泌细胞中的信号分化和整合机制,对于更好地了解鱼类生长激素的合成与分泌的内分泌调控网络有重要意义.本文综述了GH调节因子作用机制研究的新进展,包括神经内分泌因子,垂体及外周水平的调控因子,主要侧重于它们的受体系统及受体后的信号转导通路.  相似文献   

2.
神经内分泌因子调控鱼类生殖和生长的相互作用   总被引:17,自引:0,他引:17  
脊椎动物的生长与生殖活动有着密切的联系并相互作用。许多调节生长和代谢活动的内分泌因子对青春期或者性腺的发育产生影响。同样,调节生殖活动的许多激素亦同时对生长和代谢产生影响。近年来,我们和其他学者对鱼类生长和生殖的神经内分泌调节的相互作用进行了研究,主要的进展是:①在促进性腺的激素影响生长方面,发现促性腺激素释放激素(GnRH)和多巴胺都能和脑垂体生长激素细胞的特异性受体结合而刺激生长激素释放,并能  相似文献   

3.
以1龄性腺发育中期鲤鱼为材料,采用腹腔(i.p)注射的方法,研究不同的下丘脑肽和神经递质对鲤鱼促性腺激素(GtH)和生长激素(GH)分泌的影响。结果表明:促甲状腺激素释放激素(TRH)、L-多巴(L-DOPA)、甲基睾酮(MT)、γ-氨基丁酸(GABA)、促黄体素释放激素类似物(LHRH-A)和三碘甲状腺原氨酸(T3)都能显著刺激GtH的分泌,但最大效应时间各不相同。TRH和LHRH-A能促进GH的分泌,L-DOPA、MT、GABA对血清GH水平没有明显影响;T3则对GH分泌有一定的抑制作用。这说明鲤鱼GtH和GH的分泌除了受各自的下丘脑释放因子和释放抑制因子的双重神经内分泌调控外,还受多种其它相同和不同调节因子的影响,也反映了鲤鱼GtH和GH分泌的神经内分泌调控的复杂性。  相似文献   

4.
促性腺激素的神经内分泌调控   总被引:3,自引:2,他引:1       下载免费PDF全文
本文简要介绍了哺乳动物胎儿时的促性腺激素的神经内分泌调节及成体时促性腺激素的神经内分泌调节,着重介绍儿茶酚胺、阿片样、γ-氨基丁酸(GABA)、GPR54(视黄酸家族G蛋白偶联受体)/kisspeptin(GPR54内源性配体)以及Ghrelin(生长激素促分泌素受体的内源性配体)对促性腺激素分泌的调控作用。  相似文献   

5.
乌脑龟垂体显微及其腺垂体超微结构的研究   总被引:1,自引:0,他引:1  
乌龟脑垂体由柄形神经垂体和椭圆形腺垂体两部分组成,神经垂体位于腺垂体后部上方呈背腹型排列。神经垂体中神经叶不发达,腺垂体分为远侧部和中间部,特殊空泡结构成为垂体门脉系统的特征。远侧部细胞分为嗜酸性细胞、嗜碱性细胞和嫌色细胞3种。通过透射电镜观察,腺垂体远侧部主要有5种分泌激素细胞:即生长激素(GH)分泌细胞、催乳激素(PRL)分泌细胞、促甲状腺激素(TSH)分泌细胞、促肾上腺皮质激素(ACTH)分泌细胞、促性腺激素(GTH)分泌细胞和非分泌类型滤泡.星形细胞(Fs)。生长激素分泌细胞核大、分泌颗粒少的特征成为乌龟与其他动物最大的区别,可能与乌龟具有生长慢、寿命长的生物学特性有关。  相似文献   

6.
王晓安 《四川动物》1998,17(1):11-13
本实验采用辣根过氧化物酶(HRP)逆行追踪技术对鲫鱼尾部神经分泌系统进行了研究,结果表明,尾部神经分泌细胞可分为大(60-70μm)、中(40-50μm)、小(20-30μm)三种类型,在尾部脊髓的背侧面和腹侧面都有分布,HRP的引入采用Griffin(1979)提出的缓释胶法,结果证明这种方法在鱼类神经解剖的束路示踪方而是可行的。  相似文献   

7.
激素和人工诱导鱼类繁殖   总被引:11,自引:0,他引:11  
鱼类在蓄养条件下,由于环境条件变化使脑垂体不能大量分泌产生促性腺激素(GtH)因而通常不能自行产卵,必需进行人工催产,许多鱼类的GtH分泌活动受神经内分泌双重调节,即促性腺激素释放激素刺激(GnRH)而多巴胺抑制GtH的释放,因此,使用高少性的GnRH类似物和多巴胺拮抗物能十分有效地刺激养殖鱼类释放GtH和诱导产卵。海水鱼类产卵习性和淡水鱼类不同,还需研制适合海水养殖鱼类生殖生理特性的催产术。  相似文献   

8.
哺乳动物冷应激的主要神经内分泌反应   总被引:18,自引:0,他引:18  
杨明  李庆芬 《动物学研究》2002,23(4):335-340
为便于了解哺乳动物冷应激生理变化的调节机理,介绍了冷应激的主要神经内分泌反应。控制冷应激反应的主要中枢位于下丘脑。冷应激激活交感神经系统,激活下丘脑-垂体-甲状腺轴和下丘脑-垂体-肾上腺轴激素的合成和分泌,引起肾上腺髓质儿茶酚胺分泌增加;同时抑制促生长激素轴、促性腺轴、催乳激素轴的激素分泌。神经肽Y、瘦素、褪黑激素等多种神经肽和激素参与冷应激反应。  相似文献   

9.
新近发现的一种调节肽——生长素   总被引:4,自引:0,他引:4  
生长素(ghrelin)是一种新发现的含有28个氨基酸的多肽,1999年日本科学家Kojima最先在小鼠和人胃内分泌细胞中发现。最近又在人的下丘脑和脑干发现一种孤立的G蛋白偶联受体-促生长激素分泌受体(GHS-Rs),是其特异性受体,当生长素与其特异性受体结合后会产生一系列生物学效应,如刺激垂体前叶释放生长激素,增加食欲,调节能量平衡,促进胃酸分泌,抗生长素免疫球蛋白G可明显抑制食欲,神经肽Y(NPY)及刺鼠肽基因相关蛋白(AGRP)的抗体或拮抗剂可阻断生长素的增食欲作用,生长素可使NPY基因表达增高并阻断瘦素引起的降低食欲作用,禁食,低血糖和瘦素能使生长素在胃内表达上调,它可能是生长激素/胰岛素样生长因子-1轴和调节能量平衡的神经内分泌调节之间的一个新的联结纽带,与肥胖等密切相关。  相似文献   

10.
基因工程生长激素研究进展马昭若(中国专利局100083)生长激素是一种由动物的脑垂体产生并分泌的蛋白质激素。生长激素促进骨骼生长、氮保留和蛋白质合成,并影响葡萄糖与脂类代谢。历史上,一般都是从切除的垂体组织中分离纯化生长激素[1]。八十年代初以来,随着重组DNA技术的产业化,已可以由微生物大量产生各种来源不含其他杂蛋白的生长激素[2-3]。  相似文献   

11.
生长激素及其基因转移对鱼类生长和渗透压的调节作用   总被引:3,自引:0,他引:3  
傅萃长  朱作言 《动物学报》2000,46(4):407-415
生长激素及其基因转移对鱼类生长和渗透压的调节起着重要作用。转生长激素基因鱼表现出明显的快速生长效应。生长激素促进了鲑科鱼类对海水的适应能力。本文对此进行了综述,并讨论了生长激素及其基因转移对鱼类生长和渗透压调节作用的生理机制、生长激素与胰岛素样生长因子以及甲状腺激素的关系。  相似文献   

12.
13.
促性腺激素释放激素(GnRH)的主要作用是刺激脑垂体促性激素(GtH)的释放, 亦可促进鱼类生长激素(GH)的释放。促黄体素释放激素类似物(LHRH-A)是哺乳类GnRH的类似物, 为了分析LHRH-A对尼罗罗非鱼生长调节的作用, 设计了长期和短期2个实验, 采用腹腔注射(剂量0.1 μg/g体重)方法, 分析LHRH-A对尼罗罗非鱼绝对生长率、特定生长率、肝体系数和肥满度的影响, 并应用荧光实时定量PCR方法检测在注射LHRH-A后不同时段(6h、12h、24h、2周)尼罗罗非鱼垂体GH、肝脏GHR和肝脏IGF-I基因的表达变化。结果表明, LHRH-A组尼罗罗非鱼的绝对生长率、特定生长率、肝体系数、肥满度均显著高于对照组(P<0.05); 注射LHRH-A后12h、24h垂体GH mRNA表达水平均显著升高(P<0.05), 2周后恢复到对照组水平; 注射LHRH-A后24h和2周肝脏GHR mRNA表达水平显著上升(P<0.05); 注射LHRH-A后6h肝脏IGF-I mRNA表达水平显著升高(P<0.05), 12h、24h和2周恢复到对照组水平。以上结果提示, LHRH-A可显著上调尼罗罗非鱼生长轴相关基因的表达, 从而促进鱼类的生长。  相似文献   

14.
In teleost fishes, growth hormone (GH) appears to play an important regulatory role in several, apparently disparate, physiological events, including reproduction, osmotic or ionic regulation, metabolism, growth and development. GH secretion is regulated by hypothalamic neuroendocrine factors that either act directly on the somatotrophic cells in the pituitary gland, or modulate the secretion or activity of other neuroendocrine factors. In addition, the degree of the neuroendocrine influence on GH release is influenced by the nutritional and reproductive state of the fish; moreover, there appear to be marked species differences in some aspects of this neuroendocrine-physiological condition relationship among fish species. Thus, the neuroendocrine control of GH secretion in fishes is complex, and still poorly understood. The neuropeptides, gonadotrophin-releasing hormone, growth hormone-releasing hormone, thyrotrophin-releasing hormone, neuropeptide Y, serotonin and pituitary adenylate cyclase-activating polypeptide have all been demonstrated to stimulate GH in fish, as has the glutamate agonist, N-methyl-d,l-aspartate. Conversely, somatostatin has a potent inhibitory action on GH release in goldfish and carp, but is less effective in salmon and trout species.This review examines the interactive nature of the neuroendocrine control of GH secretion in fishes, and the manner in which gonadal steroids, directly or indirectly, modulate GH secretion and/or the release, or the activity, of the neuroendocrine factors.  相似文献   

15.
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.  相似文献   

16.
Endocrine Control of Osmoregulation in Teleost Fish   总被引:9,自引:0,他引:9  
As the primary link between environmental change and physiologicalresponse, the neuroendocrine system is a critical part of osmoregulatoryadaptations. Cortisol has been viewed as ‘the’ seawater-adaptinghormone in fish and prolactin as ‘the’ fresh wateradapting hormone. Recent evidence indicates that the growthhormone/insulin-like growth factor I axis is also importantin seawater adaptation in several teleosts of widely differingevolutionary lineages. In salmonids, growth hormone acts insynergy with cortisol to increase seawater tolerance, at leastpartly through the upregulation of gill cortisol receptors.Cortisol under some conditions may promote ion uptake and interactswith prolactin during acclimation to fresh water. The osmoregulatoryactions of growth hormone and prolactin are antagonistic. Insome species, thyroid hormones support the action of growthhormone and cortisol in promoting seawater acclimation. Althougha broad generalization that holds for all teleosts is unlikely,our current understanding indicates that growth hormone promotesacclimation to seawater, prolactin promotes acclimation to freshwater, and cortisol interacts with both of these hormones thushaving a dual osmoregulatory function.  相似文献   

17.
通过显微注射技术,将小鼠重金属螯合蛋白(MT-1)基因启动顺序与人生长激素基因顺序的重组体pMThGH注入鲤鱼(Cyprinus carpio)的受精卵内,由此发育的转基因鱼及其后代F1和F2均显示出快速生长效应。去垂体后,转基因鲤鱼F2持续生长,而非转基因鲤鱼和鲫鱼(Carassius auratus)的生长停止。给去垂体的鲫鱼腹腔注射生物合成的人生长激素(hGH),可恢复其生长。实验结果表明,转基因鱼体内表达和体外生物合成的hGH均能代偿鲤鱼和鲫鱼的内源生长激素并刺激去垂体鱼的生长。  相似文献   

18.
19.
IGF-1 in the brain as a regulator of reproductive neuroendocrine function   总被引:4,自引:0,他引:4  
Given the close relationship among neuroendocrine systems, it is likely that there may be common signals that coordinate the acquisition of adult reproductive function with other homeostatic processes. In this review, we focus on central nervous system insulin-like growth factor-1 (IGF-1) as a signal controlling reproductive function, with possible links to somatic growth, particularly during puberty. In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty. Gonadotropin-releasing hormone is released in pulses from neuroterminals in the median eminence (ME), and each GnRH pulse triggers the production of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These pituitary hormones in turn stimulate the synthesis and release of sex steroids by the gonads. Any factor that affects GnRH or gonadotropin pulsatility is important for puberty and reproductive function and, among these factors, the neurotrophic factor IGF-1 is a strong candidate. Although IGF-1 is most commonly studied as the tertiary peripheral hormone in the somatotropic axis via its synthesis in the liver, IGF-1 is also synthesized in the brain, within neurons and glia. In neuroendocrine brain regions, central IGF-1 plays roles in the regulation of neuroendocrine functions, including direct actions on GnRH neurons. Moreover, GnRH neurons themselves co-express IGF-1 and the IGF-1 receptor, and this expression is developmentally regulated. Here, we examine the role of IGF-1 acting in the hypothalamus as a critical link between reproductive and other neuroendocrine functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号