首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conduction properties of the voltage-gated potassium channel Kv1.3 and its modes of interaction with several polypeptide venoms are examined using Brownian dynamics simulations and molecular dynamics calculations. Employing an open-state homology model of Kv1.3, we first determine current-voltage and current-concentration curves and ascertain that simulated results accord with experimental measurements. We then investigate, using a molecular docking method and molecular dynamics simulations, the complexes formed between the Kv1.3 channel and several Kv-specific polypeptide toxins that are known to interfere with the conducting mechanisms of several classes of voltage-gated K+ channels. The depths of potential of mean force encountered by charybdotoxin, α-KTx3.7 (also known as OSK1) and ShK are, respectively, −19, −27, and −25 kT. The dissociation constants calculated from the profiles of potential of mean force correspond closely to the experimentally determined values. We pinpoint the residues in the toxins and the channel that are critical for the formation of the stable venom-channel complexes.  相似文献   

2.
Voltage-gated potassium (KV) channels can be opened by negatively charged resin acids and their derivatives. These resin acids have been proposed to attract the positively charged voltage-sensor helix (S4) toward the extracellular side of the membrane by binding to a pocket located between the lipid-facing extracellular ends of the transmembrane segments S3 and S4. By contrast to this proposed mechanism, neutralization of the top gating charge of the Shaker KV channel increased resin-acid–induced opening, suggesting other mechanisms and sites of action. Here, we explore the binding of two resin-acid derivatives, Wu50 and Wu161, to the activated/open state of the Shaker KV channel by a combination of in silico docking, molecular dynamics simulations, and electrophysiology of mutated channels. We identified three potential resin-acid–binding sites around S4: (1) the S3/S4 site previously suggested, in which positively charged residues introduced at the top of S4 are critical to keep the compound bound, (2) a site in the cleft between S4 and the pore domain (S4/pore site), in which a tryptophan at the top of S6 and the top gating charge of S4 keeps the compound bound, and (3) a site located on the extracellular side of the voltage-sensor domain, in a cleft formed by S1–S4 (the top-VSD site). The multiple binding sites around S4 and the anticipated helical-screw motion of the helix during activation make the effect of resin-acid derivatives on channel function intricate. The propensity of a specific resin acid to activate and open a voltage-gated channel likely depends on its exact binding dynamics and the types of interactions it can form with the protein in a state-specific manner.  相似文献   

3.
Correolide is a novel immunosuppressant that inhibits the voltage-gated potassium channel K(v)1.3 [Felix et al. (1999) Biochemistry 38, 4922-4930]. [(3)H]Dihydrocorreolide (diTC) binds with high affinity to membranes expressing homotetrameric K(v)1.3 channels, and high affinity diTC binding can be conferred to the diTC-insensitive channel, K(v)3.2, after substitution of three nonconserved residues in S(5) and S(6) with the corresponding amino acids present in K(v)1.3 [Hanner et al. (1999) J. Biol. Chem. 274, 25237-25244]. Site-directed mutagenesis along S(5) and S(6) of K(v)1.3 was employed to identify those residues that contribute to high affinity binding of diTC. Binding of monoiodotyrosine-HgTX(1)A19Y/Y37F ([(125)I]HgTX(1)A19Y/Y37F) in the external vestibule of the channel was used to characterize each mutant for both tetrameric channel formation and levels of channel expression. Substitutions at Leu(346) and Leu(353) in S(5), and Ala(413), Val(417), Ala(421), Pro(423), and Val(424) in S(6), cause the most dramatic effect on diTC binding to K(v)1.3. Some of the critical residues in S(6) appear to be present in a region of the protein that alters its conformation during channel gating. Molecular modeling of the S(5)-S(6) region of K(v)1.3 using the X-ray coordinates of the KcsA channel, and other experimental constraints, yield a template that can be used to dock diTC in the channel. DiTC appears to bind in the water-filled cavity below the selectivity filter to a hydrophobic pocket contributed by the side chains of specific residues. High affinity binding is predicted to be determined by the complementary shape between the bowl-shape of the cavity and the shape of the ligand. The conformational change that occurs in this region of the protein during channel gating may explain the state-dependent interaction of diTC with K(v)1.3.  相似文献   

4.
The voltage-gated potassium channel, K(v)1.3, is a novel target for development of immunosuppressants. Using a functional (86)Rb(+) efflux assay, a new class of high-affinity K(v)1.3 inhibitors has been identified. The initial active in this series, 4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl]cyclohexanone (PAC), which is representative of a disubstituted cyclohexyl (DSC) template, displays a K(i) of ca. 300 nM and a Hill coefficient near 2 in the flux assay and in voltage clamp recordings of K(v)1.3 channels in human T-lymphocytes. PAC displays excellent specificity as it only blocks members of the K(v)1 family of potassium channels but does not affect many other types of ion channels, receptors, or enzyme systems. Block of K(v)1.3 by DSC analogues occurs with a well-defined structure-activity relationship. Substitution at the C-1 ketone of PAC generates trans (down) and cis (up) isomer pairs. Whereas many DSC derivatives do not display selectivity in their interaction with different K(v)1.x channels, trans DSC derivatives distinguish between K(v)1.x channels based on their rates of C-type inactivation. DSC analogues reversibly inhibit the Ca(2+)-dependent pathway of T cell activation in in vitro assays. Together, these data suggest that DSC derivatives represent a new class of immunosuppressant agents and that specific interactions of trans DSC analogues with channel conformations related to C-type inactivation may permit development of selective K(v)1.3 channel inhibitors useful for the safe treatment of autoimmune diseases.  相似文献   

5.
Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G(0)/G(1) phase. Furthermore, low expression of K(v1.5), a voltage-gated potassium channel known to alter myoblast proliferation during the G(1) phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between K(v1.5) and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and K(v1.5) within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of K(v1.5) with FHL1C in Xenopus laevis oocytes markedly reduced K(+) currents when compared to oocytes expressing K(v1.5) only. We here present the first evidence on a biological relevance of FHL1C.  相似文献   

6.
A novel nortriterpene, termed correolide, purified from the tree Spachea correae, inhibits Kv1.3, a Shaker-type delayed rectifier potassium channel present in human T lymphocytes. Correolide inhibits 86Rb+ efflux through Kv1.3 channels expressed in CHO cells (IC50 86 nM; Hill coefficient 1) and displays a defined structure-activity relationship. Potency in this assay increases with preincubation time and with time after channel opening. Correolide displays marked selectivity against numerous receptors and voltage- and ligand-gated ion channels. Although correolide is most potent as a Kv1.3 inhibitor, it blocks all other members of the Kv1 family with 4-14-fold lower potency. C20-29-[3H]dihydrocorreolide (diTC) was prepared and shown to bind in a specific, saturable, and reversible fashion (Kd = 11 nM) to a single class of sites in membranes prepared from CHO/Kv1.3 cells. The molecular pharmacology and stoichiometry of this binding reaction suggest that one diTC site is present per Kv1.3 channel tetramer. This site is allosterically coupled to peptide and potassium binding sites in the pore of the channel. DiTC binding to human brain synaptic membranes identifies channels composed of other Kv1 family members. Correolide depolarizes human T cells to the same extent as peptidyl inhibitors of Kv1.3, suggesting that it is a candidate for development as an immunosuppressant. Correolide is the first potent, small molecule inhibitor of Kv1 series channels to be identified from a natural product source and will be useful as a probe for studying potassium channel structure and the physiological role of such channels in target tissues of interest.  相似文献   

7.
The mechanisms that target various sodium channels within different regions of the neuronal membrane, which they endow with different physiological properties, are not yet understood. To examine this issue we studied the voltage-gated sodium channel Na(v)1.9/NaN, which is preferentially expressed in small sensory neurons of dorsal root ganglia and trigeminal ganglia and the nonmyelinated axons that arise from them. Our results show that the cell adhesion molecule contactin binds directly to Na(v)1.9/NaN and recruits tenascin to the protein complex in vitro. Na(v)1.9/NaN and contactin co-immunoprecipitate from dorsal root ganglia and transfected Chinese hamster ovary cell line, and co-localize in the C-type neuron soma and along nonmyelinated C-fibers and at nerve endings in the skin. Co-transfection of Chinese hamster ovary cells with Na(v)1.9/NaN and contactin enhances the surface expression of the sodium channel over that of Na(v)1.9/NaN alone. Thus contactin binds directly to Na(v)1.9/NaN and participates in the surface localization of this channel along nonmyelinated axons.  相似文献   

8.
9.
The K(v)2.1 potassium channel plays an important role in regulating membrane excitability and is highly phosphorylated in mammalian neurons. Our previous results showed that variable phosphorylation of K(v)2.1 at multiple sites allows graded activity-dependent regulation of channel gating. Our previous studies also found functional differences between recombinant K(v)2.1 channels expressed in HEK293 cells and COS-1 cells that were eliminated upon complete dephosphorylation of K(v)2.1. To better understand how phosphorylation affects K(v)2.1 gating in HEK293 and COS-1 cells we used stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry to determine the level of phosphorylation at one newly and thirteen previously identified sites on K(v)2.1 purified from HEK293 and COS-1 cells. We identified seven phosphorylation sites on the K(v)2.1 C-terminus that exhibit different levels of phosphorylation in HEK293 and COS-1 cells. Six sites have enhanced phosphorylation in HEK293 compared to COS-1, while one site exhibits enhanced phosphorylation in COS-1 cells. No sites were found phosphorylated in one cell type and not the other. Interestingly, the sites exhibiting differential phosphorylation in HEK293 and COS-1 cells under basal conditions are similar to the subset targeted by calcineurin-mediated signaling pathways. The data presented here suggests that differential phosphorylation at a specific subset of sites, as opposed to utilization of novel cell-specific phosphorylation sites, can explain differences in the gating properties of K(v)2.1 in different cell types under basal conditions, and in the same cell type under basal versus stimulated conditions.  相似文献   

10.
The voltage-gated potassium channel in T lymphocytes, Kv1.3, an important target for immunosuppressants, is blocked by picomolar concentrations of the polypeptide ShK toxin and its analogue ShK-Dap22. ShK-Dap22 shows increased selectivity for Kv1.3, and our goal was to determine the molecular basis for this selectivity by probing the interactions of ShK and ShK-Dap22 with the pore and vestibule of Kv1.3. The free energies of interactions between toxin and channel residues were measured using mutant cycle analyses. These data, interpreted as approximate distance restraints, guided molecular dynamics simulations in which the toxins were docked with a model of Kv1.3 based on the crystal structure of the bacterial K(+)-channel KcsA. Despite the similar tertiary structures of the two ligands, the mutant cycle data imply that they make different contacts with Kv1.3, and they can be docked with the channel in configurations that are consistent with the mutant cycle data for each toxin but quite distinct from one another. ShK binds to Kv1.3 with Lys22 occupying the negatively charged pore of the channel, whereas the equivalent residue in ShK-Dap22 interacts with residues further out in the vestibule, producing a significant change in toxin orientation. The increased selectivity of ShK-Dap22 is achieved by strong interactions of Dap22 with His404 and Asp386 on Kv1.3, with only weak interactions between the channel pore and the toxin. Potent and specific blockade of Kv1.3 apparently occurs without insertion of a positively charged residue into the channel pore. Moreover, the finding that a single residue substitution alters the binding configuration emphasizes the need to obtain consistent data from multiple mutant cycle experiments in attempts to define protein interaction surfaces using these data.  相似文献   

11.
SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K(+) channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K(out) channels. Deletion mutants and chimeric proteins generated from SKOR and the K(in) channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K(T) domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K(out) alpha-subunits did not assemble with K(in) alpha-subunits because of the absence of interaction between their assembly sites.  相似文献   

12.
Zinc may play an important role in the pathogenesis of Alzheimer's disease (AD) through influencing the conformation and neurotoxicity of amyloid beta-proteins (Abeta). Zn(2+) induces rapid aggregation of synthetic or endogenous Abeta in a pH-dependent fashion. Here we show for the first time that Zn(2+)-induced aggregation of Abeta (10-21) potentiates its action on outward potassium currents in hippocampal CA1 pyramidal neurons. Using the whole-cell voltage-clamp technique, we showed that Abeta (10-21) blocked the fast-inactivating outward potassium current (I(A)) in a concentration- and aggregation-dependent manner, but with no effect on the delayed rectifier potassium current (I(K)). Both the unaggregated and aggregated forms of Abeta (10-21) significantly shifted the activation curve and the inactivation curve of I(A) to more negative potentials. But the aggregated form has more effects than the unaggregated form. These data indicated that aggregation of amyloid fragments by zinc ions is required in order to obtain full modulatory effects on potassium channel currents.  相似文献   

13.
Syntaxin 1A (Sx1A) modifies the activity of voltage-gated Ca2+ channels acting via the cytosolic and the two vicinal cysteines (271 and 272) at the transmembrane domain. Here we show that Sx1A modulates the Lc-type Ca2+ channel, Cav1.2, in a cooperative manner, and we explore whether channel clustering or the Sx1A homodimer is responsible for this activity. Sx1A formed homodimers but, when mutated at the two vicinal transmembrane domain cysteines, was unable to either dimerize or modify the channel activity suggesting disulfide bond formation. Moreover, applying global molecular dynamic search established a theoretical prospect of generating a disulfide bond between two Sx1A transmembrane helices. Nevertheless, Sx1A activity was not correlated with Sx1A homodimer. Application of a vicinal thiol reagent, phenylarsine oxide, abolished Sx1A action indicating the accessibility of Cys-271,272 thiols. Sx1A inhibition of channel activity was restored by phenylarsine oxide antidote, 2,3-dimercaptopropanol, consistent with thiol interaction of Sx1A. In addition, the supralinear mode of channel inhibition was correlated to the monomeric form of Sx1A and was apparent only when the three channel subunits alpha11.2/alpha2delta1/beta2a were present. This functional demonstration of cooperativity suggests that the three-subunit channel responds as a cluster, and Sx1A monomers associate with a dimer (or more) of a three-subunit Ca2+ channel. Consistent with channel cluster linked to Sx1A, a conformational change driven by membrane depolarization and Ca2+ entry would rapidly be transduced to the exocytotic machinery. As shown herein, the supralinear relationship between Sx1A and the voltage-gated Ca2+ channel within the cluster could convey the cooperativity that distinguishes the process of neurotransmitter release.  相似文献   

14.
Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.  相似文献   

15.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   

16.
Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of beta1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti-beta1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K(+) channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between beta1-integrins and Kv1.3 channels. However, the irrelevant K(+) channel blocker apamin had no effect on RET between beta1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with beta1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins.  相似文献   

17.
18.
19.
The regulatory (R) subunit of cAMP-dependent protein kinase I has been expressed in Escherichia coli, and oligonucleotide-directed mutagenesis was initiated in order to better understand structural changes that are induced as a consequence of cAMP-binding. Photoaffinity labeling of the type I holoenzyme with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371 [Bubis, J., & Taylor, S.S. (1987) Biochemistry 26, 3478-3486]. The site that was targeted for mutagenesis was Tyr-371. The intention was to establish whether the interactions between the tyrosine ring and the adenine ring of cAMP are primarily hydrophobic in nature or whether the hydroxyl group is critical for cAMP binding and/or for inducing conformational changes. A single base change converted Tyr-371 to Phe. This yielded an R subunit that reassociated with the catalytic subunit to form holoenzyme and bound 2 mol of cAMP/mol of R monomer. The cAMP binding properties of the holoenzyme that was formed with this mutant R subunit, however, were altered: (a) the apparent Kd(cAMP) was shifted from 16 to 60 nM; (b) Scatchard plots showed no cooperativity between the cAMP binding sites in the mutant in contrast to the positive cooperativity that is observed for the wild-type holoenzyme; (c) the Hill coefficient of 1.6 for the wild-type holoenzyme was reduced to 0.99. The Ka's for activation by cAMP were altered in the mutant holoenzyme in a manner that was proportional to the shift in Kd(cAMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号