首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing.  相似文献   

2.
Mono-, di-, and trimethylation of specific histone residues adds an additional level of complexity to the range of histone modifications that may contribute to a histone code. However, it has not been clear whether different methylated states reside stably at different chromatin sites or whether they represent dynamic intermediates at the same chromatin sites. Here, we have used recently developed antibodies that are highly specific for mono-, di-, and trimethylated lysine 9 of histone H3 (MeK9H3) to examine the subnuclear localization and replication timing of chromatin containing these epigenetic marks in mammalian cells. Me1K9H3 was largely restricted to early replicating, small punctate domains in the nuclear interior. Me2K9H3 was the predominant MeK9 epitope at the nuclear and nucleolar periphery and colocalized with sites of DNA synthesis primarily in mid-S phase. Me3K9H3 decorated late-replicating pericentric heterochromatin in mouse cells and sites of DAPI-dense intranuclear heterochromatin in human and hamster cells that replicated throughout S phase. Disruption of the Suv39h1,2 or G9a methyltransferases in murine embryonic stem cells resulted in a redistribution of methyl epitopes, but did not alter the overall spatiotemporal replication program. These results demonstrate that mono-, di-, and trimethylated states of K9H3 largely occupy distinct chromosome domains.  相似文献   

3.
Establishing how mammalian chromosome replication is regulated and how groups of replication origins are organized into replication bands will significantly increase our understanding of chromosome organization. Replication time bands in mammalian chromosomes show overall congruency with structural R- and G-banding patterns as revealed by different chromosome banding techniques. Thus, chromosome bands reflect variations in the longitudinal structure and function of the chromosome, but little is known about the structural basis of the metaphase chromosome banding pattern. At the microscopic level, both structural R and G bands and replication bands occupy discrete domains along chromosomes, suggesting separation by distinct boundaries. The purpose of this study was to determine replication timing differences encompassing a boundary between differentially replicating chromosomal bands. Using competitive PCR on replicated DNA from flow-sorted cell cycle fractions, we have analyzed the replication timing of markers spanning roughly 5 Mb of human chromosome 13q14.3/q21.1. This is only the second report of high-resolution analysis of replication timing differences across an R/G-band boundary. In contrast to previous work, however, we find that band boundaries are defined by a gradient in replication timing rather than by a sharp boundary separating R and G bands into functionally distinct chromatin compartments. These findings indicate that topographical band boundaries are not defined by specific sequences or structures.  相似文献   

4.
5.
The establishment of human chromosomal regions as distinct and characteristic domains has been demonstrated by the reproducible banding patterns observed on metaphase chromosomes as a result of various staining techniques. Although the exact molecular properties responsible for the patterns are not well understood, a general correlation has been established between the time of replication of a particular region of DNA and its banding characteristics. Using a replication timing assay based on fluorescence in situ hybridization patterns, we investigated replication timing properties across chromosomal regions with potentially distinct chromatin properties. Relative replication timing values were determined using cosmid DNA probes around the pseudoautosomal region boundary in Xp22.3 and the cytogenetic band boundary regions surrounding Xp22.2. Although we observed replication timing domains that were generally consistent with cytogenetic banding patterns, we did not find sharp replication timing boundaries at either the pseudoautosomal region boundary or at the cytogenetic band boundaries. Received: 6 September 1997; in revised form: 16 December 1997 / Accepted: 5 January 1998  相似文献   

6.
In the nucleus of animal and plant cells individual chromosomes maintain a compartmentalized structure. Chromosome territories (CTs), as these structures were named by Theodor Boveri, are essential components of the higher-order chromatin architecture. Recent studies in mammals and non-mammalian vertebrates indicate that the radial position of a given CT (or segments thereof) is correlated with its size, its gene-density and its replication timing. As a representative case, chicken cell nuclei show highly consistent radial chromatin arrangements: gene-rich, early replicating microchromosomes are clustered within the nuclear interior, while gene-poor, later replicating macrochromosomes are preferentially located at the nuclear periphery. In humans, chromosomes 18 and 19 (HSA18 and 19) territories that are of similar size show a distinctly different position in the cell nuclei of lymphocytes and lymphoblastoid cells: the gene-rich and early replicating HSA19 CTs are typically found close to the nuclear center, while the gene-poor and later replicating HSA18 CTs are preferentially located at the nuclear periphery. Recent comparative maps between human and chicken chromosomes revealed that the chicken macrochromosomes 2 and Z contain the genes homologous to HSA18, while the genes on HSA19 are located onto the chicken microchromosomes. These data lend tentative support to the hypothesis that differences in the radial nuclear positions of gene-rich, early replicating and gene-poor, later replicating chromatin have been evolutionarily conserved during a period of more than 300 million years irrespective of the evolution of highly divergent karyotypes between humans and chicken.  相似文献   

7.
Spatial organisation of the genome within the nucleus can play a role in maintaining the expressed or silent state of some genes [1]. There are distinct addresses for specific chromosomes, which have different functional characteristics, within the nuclei of dividing populations of human cells [2]. Here, we demonstrate that this level of nuclear architecture is altered in cells that have become either quiescent or senescent. Upon cell cycle exit, a gene-poor human chromosome moves from a location at the nuclear periphery to a more internal site in the nucleus, and changes its associations with nuclear substructures. The chromosome moves back toward the edge of the nucleus at a distinctive time after re-entry into the cell cycle. There is a 2-4 hour period at the beginning of G1 when the spatial organisation of these human chromosomes is established. Lastly, these experiments provide evidence that temporal control of DNA replication can be independent of spatial chromosome organisation. We conclude that the sub-nuclear organisation of chromosomes in quiescent or senescent mammalian somatic cells is fundamentally different from that in proliferating cells and that the spatial organisation of the genome is plastic.  相似文献   

8.
Mammalian chromosomal domains replicate at defined, developmentally regulated times during S phase. The positions of these domains in Chinese hamster nuclei were established within 1 hr after nuclear envelope formation and maintained thereafter. When G1 phase nuclei were incubated in Xenopus egg extracts, domains were replicated in the proper temporal order with nuclei isolated after spatial repositioning, but not with nuclei isolated prior to repositioning. Mcm2 was bound both to early- and late-replicating chromatin domains prior to this transition whereas specification of the dihydrofolate reductase replication origin took place several hours thereafter. These results identify an early G1 phase point at which replication timing is determined and demonstrate a provocative temporal coincidence between the establishment of nuclear position and replication timing.  相似文献   

9.
Chromosome paints of the rat kangaroo ( Aepyprymnus rufuscens, 2n =32) were used to define chromosome regions in the long nosed potoroo ( Potorous tridactylus, 2n =12 female, 13 male) karyotype and localize these regions in three-dimensionally preserved nuclei of the potoroo to test the hypothesis that marsupial chromosomes have a radial distribution. In human nuclei chromosomes are distributed in a proposed radial fashion. Gene-rich chromosomes in the human interphase nucleus are preferentially located in the central area while gene-poor chromosomes are found more at the periphery of the nucleus; this feature is conserved in primates and chicken. Chromosome ordering in nuclei of P. tridactylus is related to their size and centromere position. Its relationship with replication patterns in interphase nuclei and metaphase was studied. In addition it was observed that the nucleus was not a smooth entity but had projections occupied by specific chromosome regions. Edited by: R. Allshire  相似文献   

10.
The mechanisms governing telomere replication in humans are still poorly understood. To fill this gap, we investigated the timing of replication of single telomeres in human cells. Using in situ hybridization techniques, we have found that specific telomeres have preferential time windows for replication during the S-phase and that these intervals do not depend upon telomere length and are largely conserved between homologous chromosomes and between individuals, even in the presence of large subtelomeric segmental polymorphisms. Importantly, we show that one copy of the 3.3 kb macrosatellite repeat D4Z4, present in the subtelomeric region of the late replicating 4q35 telomere, is sufficient to confer both a more peripheral localization and a later-replicating property to a de novo formed telomere. Also, the presence of β-satellite repeats next to a newly created telomere is sufficient to delay its replication timing. Remarkably, several native, non-D4Z4–associated, late-replicating telomeres show a preferential localization toward the nuclear periphery, while several early-replicating telomeres are associated with the inner nuclear volume. We propose that, in humans, chromosome arm–specific subtelomeric sequences may influence both the spatial distribution of telomeres in the nucleus and their replication timing.  相似文献   

11.
12.
13.
We have found a high correlation of non-random bending of human metaphase chromosome 12 with the intranuclear arrangement deduced by Nogami et al. (Chromosoma 108 (2000) 514), providing further evidence of the relation of non-random bending and the interphase organization of the nucleus.  相似文献   

14.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.  相似文献   

15.
16.
A fluorescent in situ hybridization procedure with a chromosome 1-specific (1q12) repetitive satellite DNA probe was used to label the 1q12 regions of the chromosomes 1 in spherical and polymorphic hemopoietic cell nuclei. The entire procedure was performed in suspension to preserve nuclear morphology. The result was studied by three-dimensional analysis, as provided by a scanning laser confocal microscope. The 1q12 regions of chromosome 1 were measured to be closely associated with the nuclear envelope in isolated nuclei of unstimulated diploid human lymphocytes. The relative positions to each other in the periphery of these spherical nuclei could not be distinguished from a random distribution pattern. In the diploid and tetraploid polymorphic nuclei of cells of the promyelocytic leukemia cell line HL60 these pericentromeric sequences were also associated with the nuclear surface.  相似文献   

17.
Multinucleate tetraploid cells with unbalanced chromosomal distribution in aneuploid nuclei were obtained in Allium cepa L. root meristems. For this, their natural diploid cells were treated with a multipolarizing agent (1 h carbetamide) followed by an inhibitor of cytokinesis (1 h caffeine). Data from these multinucleate cells with aneuploid nuclei suggest that only four out of the thirty-two chromosomes of their autotetraploid complement possess DNA sequences making the nucleus competent to respond to inducers of replication and mitosis. Direct observation of cells where a single replicated chromosome had reached mitosis showed that this chromosome was the one bearing the nucleolar organizer. Six specific chromosomes would confer competence to the nucleus to respond to inducers of replication but not to those producing chromosome condensation. Another four different chromosomes would confer the nucleus with the ability to respond to mitotic inducers but not to replication inducers. The rest of the chromosomal complement seemed to lack any of the DNA sequences needed for these two important cycle transitions. In a nutshell, certain DNA sequences distributed in a few chromosomes of the onion complement are an intranuclear requirement to initiate replication and mitosis in these plant cells.  相似文献   

18.
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control.  相似文献   

19.
Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification.  相似文献   

20.
The mammalian chromosomes present specific sites of gaps or breaks, the common fragile sites (CFSs), when the cells are exposed to DNA replication stress or to some DNA binding compounds. CFSs span hundreds or thousands of kilobases. The analysis of these sequences has not definitively clarified the causes of their fragility. There is considerable evidence that CFSs are regions of late or slowed replication in the presence of sequence elements that have the propensity to form secondary structures, and that the cytogenetic expression of CFSs may be due to unreplicated DNA. In order to analyse the relationship between DNA replication time and fragility, in this work we have investigated the timing of replication of sequences mapping within two CFSs (FRA1H and FRA2G), of syntenic non-fragile sequences and of early and late replicating control sequences by using fluorescent in situ hybridization on interphase nuclei, conventional fluorescence microscopy and confocal microscopy. Our results indicate that the fragile sequences are slow replicating and that they enter G2 phase unreplicated with very high frequency. Thus these regions could sometimes reach mitosis unreplicated or undercondensed and be expressed as chromosome gaps/breakages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号