首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Dinucleoside boranophosphates including four kinds of nucleobases were synthesized by a boranophosphotriester method in good yields. In the present boranophosphotriester method, side-reactions at the nucleobases, which caused by a borane reagent, were completely avoided.  相似文献   

2.
Backbone-modified DNA analogs were synthesized in good yields by the boranophosphotriester method on a solid support. The oligodeoxyribonucleoside boranophosphates, protected with 2-(azidomethyl)benzoyl groups for nucleobases, were converted into DNA and its backbone-modified analogs via the corresponding H-phosphonate intermediates. A new protecting group for the O6 position of 2'-deoxyguanosine, 4-azidobenzyl (ABn) group, was also developed. The ABn group can be quickly removed by treatment with MePPh2 and H2O in the presence of 2-mercaptoethanol.  相似文献   

3.
The qualitative and quantitative analysis by high performance liquid chromatography of the normal and modiefied nucleobases excreted in urine represents a new and versatile tool, especially in oncology. The excretion of 2 normal (adenine, guanine) and 4 modified nucleobases (methylated guanine derivatives) in urine was measured by cation exchange LC. All chronic myeloproliferative syndromes showed highly elevated total excretion values of all determined nucleobases, the "pattern" being characteristic with N2, N2-dimethylguanine most prominent (up to 29.8 S.D. above the pertinent normal value). A follow-up study of a case of CML with two episodes of extreme leukocytosis showed a correlation of the nucleobases excretion with the number of leukocytes. Thus, a method has been established which permits the assessment of myeloproliferation and probably therapy effects.  相似文献   

4.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

5.
1. The rate of [3H]thymidine incorporation into DNA was measured in phytohaemagglutinin-stimulated lymph-node lymphocytes of the rat. 2. Addition of nucleobases or nucleosides to culture medium that already contained 0.2 mM-glutamine had a small stimulatory effect on incorporation. At lower concentrations of glutamine, adenosine (even at 1 microM) caused a marked increase in the rate of incorporation. 3. In the absence of added glutamine, addition of nucleosides or nucleobases markedly increased the rate of incorporation: nucleosides were more effective than nucleobases; and the rate of proliferation in the presence of 10 microM-adenosine plus 10 microM-uridine was similar to that in the presence of optimal concentrations of glutamine. 4. The rate of incorporation was dramatically decreased by an inhibitor of the pathway of pyrimidine nucleotide synthesis de novo. Addition of the pyrimidine nucleosides completely overcame the inhibition; addition of the pyrimidine nucleobases was much less effective. 5. These results indicate that, for proliferation of lymphocytes, glutamine is not essential and can be partially or totally replaced by nucleosides and, to some extent, by nucleobases.  相似文献   

6.
Endogenous and exogenous accumulation of nucleobases was observed when Escherichia coli entered the stationary phase. The onset of the stationary phase was accompanied by excretion of uracil and xanthine. Except for uracil and xanthine, other nucleobases (except for minor amounts of hypoxanthine), nucleosides, and nucleotides (except for cyclic AMP) were not detected in significant amounts in the culture medium. In addition to exogenous accumulation of nucleobases, stationary-phase cells increased the endogenous concentrations of free nucleobases. In contrast to extracellular nucleobases, hypoxanthine was the dominating intracellular nucleobase and xanthine was present only in minor concentrations inside the cells. Excretion of nucleobases was always connected to declining growth rates. It was observed in response to entry into the stationary phase independent of the initial cause of the cessation of cell growth (e.g., starvation for essential nutrients). In addition, transient accumulation of exogenous nucleobases was observed during perturbations of balanced growth conditions such as energy source downshifts. The nucleobases uracil and xanthine are the final breakdown products of pyrimidine (uracil and cytosine) and purine (adenine and guanine) bases, respectively. Hypoxanthine is the primary degradation product of adenine, which is further oxidized to xanthine. The endogenous and exogenous accumulation of these nucleobases in response to entry into the stationary phase is attributed to degradation of rRNA.  相似文献   

7.
In the testis, nucleosides and nucleobases are important substrates of the salvage pathway for nucleotide biosynthesis, and one of the roles of Sertoli cells is to provide nutrients and metabolic precursors to spermatogenic cells located within the blood-testis barrier (BTB). We have already shown that concentrative and equilibrative nucleoside transporters are expressed and are functional in primary-cultured rat Sertoli cells as a BTB model, but little is known about nucleobase transport at the BTB or about the genes encoding specific nucleobase transporters in mammalian cells. In the present study, we examined the uptake of purine ([3H]guanine) and pyrimidine ([3H]uracil) nucleobases by primary-cultured rat Sertoli cells. The uptake of both nucleobases was time and concentration dependent. Kinetic analysis showed the involvement of three different transport systems in guanine uptake. In contrast, uracil uptake was mediated by a single Na+-dependent high-affinity transport system. Guanine uptake was inhibited by other purine nucleobases but not by pyrimidine nucleobases, whereas uracil uptake was inhibited only by pyrimidine nucleobases. In conclusion, it was suggested that there might be purine- or pyrimidine-selective nucleobase transporters in rat Sertoli cells.  相似文献   

8.
N-(1-alkenyl) derivatives of 2,4-pyrimidinediones (6-9) were prepared in a one pot synthesis from aldehydes and the nucleobases using trimethylsilyl trifluoromethanesulfonate (TfOTMS) as coupling reagent. Presilylation of the above nucleobases, and N6-benzoyladenine, with excess N,O-bis(trimethylsilyl)acetamide (BSA) followed by addition of one mol eq. TfOTMS yielded the N-(1-trimethylsilyloxyalkyl) derivatives 1-5.  相似文献   

9.
The RNA world hypothesis proposes that RNA once functioned as the principal genetic material and biological catalyst. However, RNA is a complex molecule made up of phosphate, ribose, and nucleobase moieties, and its evolution is unclear. Yakhnin has proposed a period of prebiotic chemical evolution prior to the advent of replication and Darwinian evolution, in which macromolecules containing polyols joined by phosphodiester linkages underwent spontaneous transesterification reactions with selection for stability. Although he proposes that the nucleobases were obtained during this stage from less stable macromolecules, the ultimate source of the nucleobases is not addressed. We propose that the purine nucleobases arose in situ from simpler precursors attached to a ribose-phosphate backbone, and that the weaker and less specific intra- and interstrand interactions between these precursors were the forerunners to the base pairing and base stacking interactions of the modern RNA nucleobases. Further, in line with Granick’s hypothesis of biosynthetic pathways recapitulating evolution, we propose that these simpler precursors were the same or similar to intermediates of the modern de novo purine biosynthetic pathway. We propose that successive nucleobase precursors formed progressively stronger interactions that stabilized the ribose-phosphate polymer, and that the increased stability of the parent polymer drove the selection and further chemical evolution of the purine nucleobases. Such interactions may have included hydrogen bonding between ribose hydroxyls, hydrogen bonding between carbonyl oxygens and protonated amine side groups, the intra- and interstrand coordination of metal cations, and the stacking of imidazole rings. Five of the eleven steps of the modern de novo purine biosynthetic pathway have previously been shown to have alternative nonenzymatic syntheses, while a sixth step has also been proposed to occur nonenzymatically, supporting a prebiotic origin for the pathway.  相似文献   

10.
Using the copper(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition, a post-elongation modification of 1-ethynyl substituted nucleobases has been employed to construct 18 variations of oligonucleotides from a common oligonucleotide precursor. The triplex-forming ability of each oligonucleotide with dsDNA was evaluated by the UV melting experiment. It was found that triazole nucleobases generally tend to exhibit binding affinities in the following order: CG>TA>AT, GC base pairs. Among the triazole nucleobases examined, a 1-(4-ureidophenyl)triazole provided the best result with regard to affinity and selectivity for the CG base pair.  相似文献   

11.
Ji S  Guo Q  Yue Q  Wang L  Wang H  Zhao J  Dong R  Liu J  Jia J 《Biosensors & bioelectronics》2011,26(5):2067-2073
Fabrication of sub-monolayer array of Pt nanoparticles (PtNPs) assembled at nucleobases terminated layers and their application into H(2)O(2) and glucose sensing were reported. To prepare such a PtNPs assembly, 3-mercaptopropionic acid (MPA), Zr(4+), nucleotide-5'-monophosphate (NTMP including guanosine, adenosine, cytidine, uridine-5'-monophosphate, and abbreviations were GMP, AMP, CMP, UMP, respectively) were adsorbed onto Au substrate sequentially to form nucleobases terminated surface and Zr(4+) acted as binder to link carboxylic and phosphoric groups (NTMP/Zr(4+)/MPA/Au). Complexation of cisplatin, cis-Pt(NH(3))(2)Cl(2), with terminated nucleobases and following electrochemical reduction of surface-bound cisplatin gave PtNPs attached surface. Different PtNPs coverage or particle density was obtained depending on the NTMP used and decreased in the order: PtNPs/GMP/Zr(4+)/MPA/Au>PtNPs/AMP/Zr(4+)/MPA/Au>PtNPs/CMP/Zr(4+)/MPA/Au>PtNPs/UMP/Zr(4+)/MPA/Au. The surface loading of Pt was between 160 and 16 ng/cm(2). The as prepared PtNPs can be used as electrocatalysts for H(2)O(2) sensing (detection limit of H(2)O(2)<100 nM) and the sensitivity increased with decreasing PtNPs density. After adsorption of glucose oxidase, the modified electrode can be used as enzymatic electrode for glucose sensing and a detection limit of 38.5 μM was achieved. This study provided an example of fabricating PtNP arrays utilising surface complexation of cisplatin with nucleobases. The advantage of this method is that the NP density can be controlled through changing nucleobases or Pt complexes used to obtain suitable kinetics of the complexation reactions. Additionally, the PtNPs sub-monolayer as prepared has high sensitivity for H(2)O(2) sensing even at a very low loading of Pt.  相似文献   

12.
Han J  Burke JM 《Biochemistry》2005,44(21):7864-7870
We have used nucleobase substitution and kinetic analysis to test the hypothesis that hammerhead catalysis occurs by a general acid-base mechanism, in which nucleobases are directly involved in deprotonation of the attacking 2'-hydroxyl group and protonation of the 5'-oxygen that serves as the leaving group in the cleavage reaction. We demonstrate that simultaneous substitution of two important nucleobases, G8 and G12, with 2,6-diaminopurine shifts the pH optimum of the cleavage reaction from greater than 9.5 to approximately 6.8 in two different hammerhead constructs. Controls involving substitution with other nucleobases and combinations of nucleobases at G5, G8, and/or G12 do not show this behavior. The observed changes in the pH-rate behavior are consistent with a mechanism in which N1 protonation-deprotonation events of guanine or 2,6-diaminopurine at positions 8 and 12 are essential for catalysis. Further support for the participation of G8 and G12 comes from photochemical cross-linking experiments, which show that G8 and G12 can stack upon the two substrate nucleobases at the reactive linkage, G(or U)1.1 and C17 (Heckman, J. E., Lambert, D., and Burke, J. M. (2005) Photocrosslinking detects a compact active structure of the hammerhead ribozyme, Biochemistry 44, 4148-4156). Together, these results support a model in which the hammerhead undergoes a transient conformational change into a catalytically active structure, in which stacking of G8 and G12 upon the nucleobases spanning the cleavage site provides an appropriate architecture for general acid-base catalysis. The hammerhead and hairpin ribozymes may share similarities in the organization of their active sites and their catalytic mechanism.  相似文献   

13.
Escherichia coli mutants which secreted thymidine, thymine, uracil, cytosine, and guanine into the culture medium were isolated. The isolation strategy was based on the combination of a sensitive screening method and a mutant-generating system. The screening method made use of a thyA mutant of E. coli. These cells, when spread on the agar surface with the 3-galactosidase indicator X-gal, will grow into bule colonies if a minute amount of thymidine is supplied to them from a nearby secretor colony. A chemostat was used as a mutant-generating system to select for E. coli mutants that were resistant to inhibitors of the pyrimidine biosynthetic pathway. Although many mutants were selected based on their secretion of thymidine, other kinds of nucleosides and nucleobases, such as cytosine, uracil, guanine, and thymine, were also present in larger quantities. This rational selection strategy should be applicable to other species of micro-organisms for the isolation of better producers of nucleosides. The production of nucleosides and nucleobases by fermentation could then become a possibility.  相似文献   

14.
We have synthesized diastereomerically pure diadenosine 3',5'-boranophosphates (Ap(b)A) by using the boranophosphotriester method from ribonucleosides protected with the 2'-hydroxy protecting group 2-cyanoethoxymethyl (CEM). Melting curves of the triple-helical complex of the dimer Ap(b)A and 2poly(U) at high ionic strength revealed that presumptive (Sp)-Ap(b)A had a much higher affinity and presumptive (Rp)-Ap(b)A a much lower affinity for poly(U) than the natural dimer ApA did. In contrast, the affinities of these dimers for poly(dT) were similar. Both the (Rp)- and the (Sp)-boranophosphate diastereomers showed much higher resistance to digestion by snake venom phosphodiesterase and nuclease P1 than ApA did. They have potential for use as synthons to be incorporated into boranophosphate oligonucleotides. In particular, because oligonucleotides containing Sp boranophosphate nucleotides are expected to bind more strongly and specifically to RNA than natural oligoribonucleotides do, they may find application in the isolation and detection of functional RNA in basic research and diagnostics.  相似文献   

15.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.  相似文献   

16.
Oligonucleotides including C-nucleotides having 1-substitued 1H-1,2,3-triazoles as artificial nucleobases were conveniently synthesized by the post-elongation modification method using the copper(I)-catalyzed alkyne–azide 1,3-dipolar cycloaddition (CuAAC) reaction. The base-pairing properties of the triazole nucleobase analogs in forming duplexes with oligonucleotides were investigated by the Tm experiments.  相似文献   

17.
An Electron Paramagnetic Relaxation study of the competitive equilibria of Cu(II) and Mn(II) towards imidazole and methyl-imidazole was carried out. ΔH, a, I and lineshape variations were studied in order to define the extent and the limits of the metal ions interaction with nucleobases. The EPR evidence of a major affinity of Cu(II) with respect to Mn(II) in binding to nucleobases was demonstrated.  相似文献   

18.
Lambert D  Heckman JE  Burke JM 《Biochemistry》2006,45(23):7140-7147
Native hammerhead ribozymes contain RNA domains that enable high catalytic activity under physiological conditions, where minimal hammerheads show little activity. However, little is known about potential differences in native versus minimal ribozyme folding. Here, we present results of photocross-linking analysis of native and minimal hammerheads containing photoreactive nucleobases 6-thioguanosine, 2,6-diaminopurine, 4-thiouridine, and pyrrolocytidine, introduced at specific sites within the catalytic core. Under conditions where catalytic activity is observed, the two substrate nucleobases spanning the cleavage site approach and stack upon G8 and G12 of the native hammerhead, two conserved nucleobases that show similar behavior in minimal constructs, have been implicated in general acid-base catalysis, and are >15 A from the cleavage site in the crystal structures. Pyrrolocytidine at cleavage site position 17 forms an efficient crosslink to G12, and the crosslinked RNA retains catalytic activity. Multiple cross-linked species point to a structural rearrangement within the U-turn, positioning residue G5 in the vicinity of cleavage site position 1.1. Intriguing crosslinks were triggered by nucleotide analogues at positions distal to the crosslinked residues; for example, 6-thioguanosine at position 5 induced a crosslink between G12 and C17, suggesting an intimate functional communication among these three nucleobases. Together, these results support a model in which the native hammerhead folds to an active structure similar to that of the minimal ribozyme, and significantly different from the crystallographic structures.  相似文献   

19.
Nam K  Gao J  York DM 《RNA (New York, N.Y.)》2008,14(8):1501-1507
Molecular dynamics simulations using a combined quantum mechanical/molecular mechanical potential are used to determine the two-dimensional free energy profiles for the mechanism of RNA transphosphorylation in solution and catalyzed by the hairpin ribozyme. A mechanism is explored whereby the reaction proceeds without explicit chemical participation by conserved nucleobases in the active site. The ribozyme lowers the overall free energy barrier by up to 16 kcal/mol, accounting for the majority of the observed rate enhancement. The barrier reduction in this mechanism is achieved mainly by the electrostatic environment provided by the ribozyme without recruitment of active site nucleobases as acid or base catalysts. The results establish a baseline mechanism that invokes only the solvation and specific hydrogen-bonding interactions present in the ribozyme active site and provide a departure point for the exploration of alternate mechanisms where nucleobases play an active chemical role.  相似文献   

20.
The mixed association of testosterone-sulfate and estradiol-sulfate with several derivatives of nucleobases in D2O has been investigated by means of nuclear magnetic resonnance spectroscopy. From the differences among the chemical shifts of the hormone-protons it is concluded, that the nucleobases in the complexes are located above the center of the steroid molecule. The beta-side of the steroid which is characterized by the axial methyl-groups is directed towards the bases. The enthalpies of mixed association of the hormones with a certain nucleobase of the same order of magnitude as the enthalpy of selfassociation of this nucleobase (Schimmack et al., to be published). It is suggested that the complexes are stabilized by van-der-Waals forces. This stacking-like interaction is not specific for the male or female sex hormones: no qualitative or quantitative differences have been observed among the complexes of the two hormone-sulfates with the nucleobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号