首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

2.
New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.  相似文献   

3.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

4.
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.  相似文献   

5.
Triplex-forming oligonucleotides (TFOs) are among the most specific DNA ligands and represent an important tool for specific regulation of gene expression. TFOs have also been used to target DNA-modifying molecules to obtain irreversible modifications on a specific site of the genome. A number of molecules have been recognized to target topoisomerase II and stabilize double-stranded cleavage mediated by this enzyme thus determining permanent DNA damage. Among these poisons, etoposide (VP16), a 4'-demethylepipodophyllotoxin derivative, is widely used in cancer chemotherapy. In the aim to design DNA site-specific molecules, three analogues of VP16 (1, 2, and 3), recently described (Duca et al. J. Med. Chem. 2005, 48, 596-603), were attached to TFOs, together with a fourth one, of which the synthesis is reported here. Two different oligonucleotides, differing by the length (a 16-mer and a 20-mer), and two different linker arms between the oligonucleotide and the drug were used. The coupling reaction between the drug and the TFO was further improved. For the first time, we also report the synthesis of TFO conjugates bearing two molecules of inhibitor linked to the same oligonucleotide end. In total, 16 new conjugates were synthesized and evaluated for their ability to form triple helices. The loss in triplex stability due to the conjugation of the TFO to compounds that do not interact with DNA is compensated by the presence of the ethylene glycol linker arm. This stabilization effect is more pronounced at the 3' end than at the 5' end. All conjugates form a stable triplex selectively on the DNA target at 37 degrees C and pH 7.2.  相似文献   

6.
7.
Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.  相似文献   

8.
Oligodeoxynucleotide (ODN) conjugates with the polylysine comb-type copolymer having an ability to promote and stabilize duplex and triplex DNA formation were prepared. 5'-Aminated ODN was succinylated with succinic anhydride. The resulting ODNs having carboxyl terminus were coupled with epsilon-amino groups of the comb-type copolymer using water soluble carbodiimide. The conjugate free from unconjugated ODNs was obtained by gel permeation chromatography. The resulting conjugate maintains ability to form duplex and triplex DNA as estimated by melting curve analysis. Both specificity and stability of the triplex DNA formation were increased by employing the ODN-copolymer conjugates compared to those with their mixture.  相似文献   

9.
Polyamines are excellent stabilizers of triplex DNA. Recent studies in our laboratory revealed a remarkable structural specificity of polyamines in the induction and stabilization of triplex DNA. 1,3-Diaminopropane (DAP) showed optimum efficacy amongst a series of synthetic diamines in stabilizing triplex DNA. To utilize the potential of this finding in developing an anti-gene strategy for breast cancer, we treated MCF-7 cells with a 37mer oligonucleotide to form triplex DNA in the up-stream regulatory region of the c-myc oncogene in the presence of DAP. As individual agents, the oligonucleotide and DAP did not downregulate c-myc mRNA in the presence of estradiol. Complexation of the oligonucleotide with 2 mM DAP reduced c-myc mRNA signal by 65% at 10 microM oligonucleotide concentration. In contrast, a control oligonucleotide had no significant effect on c-myc mRNA. The expression of c-fos oncogene was not significantly altered by the triplex forming oligonucleotide (TFO). DAP was internalized within 1 h of treatment; however, it had no significant effect on the level of natural polyamines. These data indicate that selective utilization of synthetic polyamines and TFOs might be an important strategy to develop anti-gene-based therapeutic modalities for breast cancer.  相似文献   

10.
A possibility of using oligonucleotide conjugates with minor groove ligands as probes for hybridization microarray chips was studied. The oligonucleotide conjugates contain a hairpin ligand (MGB) composed of two tripyrrolcarboxamide residues with an aminocaproic acid residue as a linker and bound to the oligonucleotide duplex AT tract in a site-specific manner. We used as (5'-3') probes GACAAGAp, GACAAAAp, GACAAGA-MGB, and GACAAAA-MGB. The oligonucleotides labeled with Cy3 cyanine dye, Cy3-ACTAATTTTGTC and Cy3-ACTAATCTTGTC, were used as targets. The maximal MGB effect on the fluorescence level of microarray chip spots, which caused its fourfold increase as compared with the initial unmodified duplex, was observed for the duplex containing only AT pairs in the ligand binding site. The presence of A-C and G-T mutations in the binding site (imperfect duplexes) or a C-G pair (perfect duplex) affects the change in fluorescence level to a considerably lesser degree.  相似文献   

11.
A possibility of using oligonucleotide conjugates with minor groove ligands as probes for hybridization microarray chips was studied. The oligonucleotide conjugates contain a hairpin ligand (MGB) composed of two tripyrrolcarboxamide residues with an aminocaproic acid residue as a linker and bound to the oligonucleotide duplex AT tract in a site-specific manner. We used as (5′-3′)-probes: GACAAGAp, GACAAAAp, GACAAGA-MGB, and GACAAAA-MGB. The oligonucleotides labeled with the Cy3 cyanine dye, Cy3-ACTAATTTTGTC and Cy3-ACTAATCTTGTC, were used as targets. The maximal MGB effect on the fluorescence level of microarray chip spots, which caused its fourfold increase as compared with the initial unmodified duplex, was observed for the duplex containing only AT pairs in the ligand binding site. The presence of AC and GT mutations in the binding site (imperfect duplexes) or a CG pair (perfect duplex) affect the change in fluorescence level to a considerably lesser degree.  相似文献   

12.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

13.
To achieve a sequence-specific DNA cleavage by topoisomerase I, derivatives of the antitumor drug camptothecin have been covalently linked to triple helix-forming oligonucleotides that bind in a sequence-specific manner to the major groove of double-helical DNA. Triplex formation at the target sequence positions the drug selectively at the triplex site, thereby stimulating topoisomerase I-mediated DNA cleavage at this site. In a continuous effort to optimize this strategy, a broad set of conjugates consisting of (i) 16-20-base-long oligonucleotides, (ii) alkyl linkers of variable length, and (iii) camptothecin derivatives substituted on the A or B quinoline ring were designed and synthesized. Analysis of the cleavage sites at nucleotide resolution reveals that the specificity and efficacy of cleavage depends markedly on the length of both the triple-helical structure and the linker between the oligonucleotide and the poison. The optimized hybrid molecules induced strong and highly specific cleavage at a site adjacent to the triplex. Furthermore, the drug-stabilized DNA-topoisomerase I cleavage complexes were shown to be more resistant to salt-induced reversal than the complexes induced by camptothecin alone. Such rationally designed camptothecin conjugates could provide useful antitumor drugs directed selectively against genes bearing the targeted triplex binding site. In addition, they represent a powerful tool to probe the molecular interactions in the DNA-topoisomerase I complex.  相似文献   

14.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove in side-by-side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence-specific manner, similarly to the corresponding mono-conjugated hairpin structures. The series of conjugates with the general formula Oligo-(L-MGB-R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = -(Py)n-, -(Im)n- or -[(Py/Im)n-(CH2)3CONH-(Py/Im)n-] and I < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis-phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence-specific parallel ligand [-L(Py)4R] to monophosphoroamidate conjugate CGTTTATT-L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [-L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

15.
Base-specific hydrogen bonding between an oligonucleotide and the purines in the major groove of a DNA duplex provide an approach to selective inhibition of gene expression. Oligonucleotide-mediated triplex formation in vivo may be enhanced by a number of different chemical modifications. We have previously described an in vitro analysis of triplex formation using oligonucleotides containing internucleoside phosphate linkages modified with the cation N , N -diethyl-ethylenediamine (DEED). When compared with unmodified oligonucleotides of identical base composition, DEED-modified oligonucleotides were better able to form DNA triplexes under conditions that approximate the pH, magnesium and potassium levels found in vivo . Here we report the ability of DEED-modified oligonucleotides to inhibit the expression of plasmid DNA injected into Xenopus oocytes. Inhibition is specific to plasmids containing a triplex formation target and sensitive to sequence alteration in the triplex forming target site. Inhibition of gene expression was nearly complete when oligonucleotide and plasmid were mixed together prior to injection. Inhibition was partial when oligonucleotide was injected first and not evident when plasmid was injected and allowed to form chromatin prior to oligonucleotide injection. Thus, access to DNA is a determining factor in effective triplex inhibition of gene expression.  相似文献   

16.
Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was antiparallel to the purine strand of the duplex DNA target. In contrast, (GT)-containing oligophosphorothioates (23mer GT-PS) did not support triplex formation in either orientation, whereas the 23mer GT-PO oligophosphodiester demonstrated triplex formation in the antiparallel orientation. GA-PS oligonucleotides, in contrast to GT-PS oligonucleotides, were capable of self-association, but these self-associated structures exhibited lower stabilities than those formed with GA-PO oligonucleotides, suggesting that homoduplex formation (previously described for the 23mer GA-PO sequence by Noonberg et al.) could not fully account for the decrease in triplex stability when phosphorothioate linkages were used. The 23mer GA-PS oligonucleotide was covalently linked via its 5'-end to an acridine derivative (23mer Acr-GA-PS). In the presence of potassium cations, this conjugate demonstrated triplex formation with higher binding affinity than the unmodified 23mer GA-PS oligonucleotide and even than the 23mer GA-PO oligonucleotide. A (GA)-containing oligophosphodiester with two phosphorothioate linkages at both the 5'- and 3'-ends exhibited similar binding affinity to duplex DNA compared with the unmodified GA-PO oligophosphodiester. This capped oligonucleotide was more resistant to nucleases than the GA-PO oligomer and thus represents a good alternative for ex vivo applications of (GA)-containing, triplex-forming oligonucleotides, allowing a higher binding affinity for its duplex target without rapid cellular degradation.  相似文献   

17.
18.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

19.
Linear polyamines are excellent promoters of triplex DNA formation. The effects of structural rigidization of polyamines on triplex DNA stability are not known at present. We wished to develop a series of polyamine analogs as secondary ligands for triplex DNA stabilization for antigene applications. To accomplish this goal, we synthesized cyclopolyamines by interconnecting the two amino or imino groups of linear polyamines with a --(CH2)n-bridge (n=3,4,5). Melting temperature (Tm) data showed that [4,3]-spermine and [4,4]-spermine stabilized poly(dA) x 2poly(dT) triplex at >25 microM concentrations (Tm = 71 degrees C at 100 microM). The dTm/dlog [polyamine] values for these compounds were 26 and 40, respectively. [4,3]-Spermine and [4,4]-spermine also stabilized triplex DNA formed by a purine-motif triplex-forming oligonucleotide, TG3TG4TG4TG3T with its target duplex, as determined by Tm, circular dichroism (CD) spectroscopy, and electrophoretic mobility shift assay (EMSA). In contrast, [4,4]-putrescine and [4,5]-putrescine as well as [4,5]-spermine had no triplex DNA stabilizing effect. CD spectra also showed triplex DNA aggregation and psi-DNA formation at >100 microM [4,3]-spermine. These data demonstrate that structural rigidization of linear polyamines has a profound effect on their ability to stabilize triplex DNA and provoke conformational transitions.  相似文献   

20.
A simple one-step procedure was applied for synthesis of oligonucleotide conjugates bearing two pyrene residues at the 5′-phosphate of oligonucleotide. Excimer fluorescence intensity of the conjugates is highly sensitive to duplex formation: binding of the bis-pyrenylated oligonucleotides to their DNA and RNA targets leads 10-fold increase of fluorescence. The data show that excimer fluorescence intensity of the conjugates depends linearly on the concentration of target DNA and permits quantification of DNA in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号