首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small intestinal cryptopatches (CP) are the major anatomic site for extrathymic differentiation by precursors destined to become intestinal intraepithelial T lymphocytes (IEL). We found that mice deficient in CCR6 exhibited a 2.7-fold increase in the number of alphabeta TCR IEL, but little or no expansion of gammadelta TCR IEL. Among the alphabeta TCR IEL subsets, the CD4- CD8alphaalpha+ and CD4+ CD8alphaalpha+ subsets were preferentially expanded in CCR6 null mice. Because some CD8alphaalpha+ IEL can arise through extrathymic differentiation in CP, we investigated CCR6 expression by T lymphocyte precursors undergoing extrathymic differentiation in intestinal CP. In sections of CP, 50-60% of c-kit+ precursors were CCR6+. CD11c(+) cells concentrated at the periphery of CP did not express CCR6. A subset of c-kit+, Lin- cells in lamina propria suspensions was CCR6+, but CCR6 was absent from c-kit+ precursors in bone marrow. CCR6 was absent from the vast majority of mature IEL. CCR6 is present on lymphocyte precursors in cryptopatches, expressed transiently during extrathymic IEL development, and is required for homeostatic regulation of intestinal IEL.  相似文献   

2.
Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were separated and partially purified from glucose-grown cells of Lactobacillus casei. The enzymes had similar pH optima, thermosensitivity and molecular weights. They had different net charges and their pI values were 5.38 and 4.52, respectively. Histidine, arginine, lysine and cysteine residues were essential for the activity of G6PD, and all the above amino acids with the exception of lysine were required for 6PGD activity. Mg2+ activated 6PGD up to 15 mM concentration, above which it was inhibitory. It had no effect on G6PD activity. G6PD was specific for NADP+, but 6PGD showed some activity with NAD+ as the cofactor, although it was essentially NADP(+)-preferring. Both the enzymes, were inhibited by NADPH. 6PGD was also inhibited by its product, ribulose 5-phosphate. ATP inhibited 6PGD only at subsaturating concentrations of NADP+. The inhibition was sigmoidal in the absence of Mg2+ and hyperbolic in its presence.  相似文献   

3.
A Mo6+ -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo6+, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo6+ (10 mM), the bacterium reduced Mo6+ to form molybdenum blue. Approximately 27% of Mo6+ added to the medium was reduced after 28 h of cultivation. The reduction of Mo6+ with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo6+ reduction. NADH and N,N,N′,N′ -tetramethyl-p-phenylenediamine served as electron donors for Mo6+ reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo6+ reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo6+ reduction. Both ferric and stannous ions strongly enhanced the activity of Mo6+ reduction by NADH.  相似文献   

4.
5.
In the presence of phosphate ions, molybdic ions (Mo6+) were reduced enzymatically with elemental sulfur by washed intact cells of Thiobacillus ferrooxidans to give molybdenum blue. The whole-cell activity that reduced Mo6+ was totally due to cellular sulfur:ferric ion oxidoreductase (SFORase) (T. Sugio, W. Mizunashi, K. Inagaki, and T. Tano, J. Bacteriol. 169:4916-4922, 1987). The activity of M06+ reduction with elemental sulfur was competitively inhibited by Fe3+, Cu2+, and Co2+. The Michaelis constant of SFORase for Mo6+ was 7.6 mM, and the inhibition constants for Fe3+, Cu2+, and Co2+ were 0.084, 0.015, and 0.17 mM, respectively, suggesting that SFORase can reduce not only Fe3+ and Mo6+ but also Cu2+ and Co2+ with elemental sulfur.  相似文献   

6.
Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway.  相似文献   

7.
CD40 mAb at subsaturating doses inhibit the growth of transformants of the M12 murine cell line expressing intact full length CD40 molecules (M12/CD40+ cells) but do not inhibit the growth of two M12 transformants expressing either a mutant CD40 cDNA missing most of the cytoplasmic tail (CD40/tailless) or a mutant cDNA with a substitution at residue 234 (CD40/234A, Ala for Thr). Using these transformants, we tested a panel of cytokines for the ability to mimic CD40 mAb. rIL-6 behaved like CD40 mAb and inhibited the growth of M12/CD40+ cells but not of CD40/tailless or CD40/234A mutants. The effect of IL-6 on M12/CD40+ cells not only required intact CD40 including threonine 234 but also was specific because IL-6 mAb blocked the inhibitory activity. The M12/CD40+ cells responsive to IL-6 expressed greater than 300,000 CD40 molecules/cells but, like M12/CD40-controls, expressed only small numbers (less than 50/cell) of high affinity IL-6R, indicating that CD40 is not a receptor for IL-6. Nevertheless, IL-6 utilizes intact CD40 efficiently when it signals these cells: treatment of M12/CD40+ cells with IL-6 induced increased phosphorylation of CD40. Conversely, triggering CD40 on M12/CD40+ cells leads to IL-6 production. Similar effects were evident in human CD40+ B cells: IL-6 increased the phosphorylation of CD40 in the IL-6-responsive cell line, CESS, and CD40 mAb induced IL-6 production in activated human B cells. Thus, CD40 may function to receive and regulate IL-6-dependent signals in B cells.  相似文献   

8.
Five different immobilized NAD+ derivatives were employed to compare the behavior of four amino acid dehydrogenases chromatographed using kinetic-based enzyme capture strategies (KBECS): S6-, N6-, N1-, 8'-azo-, and pyrophosphate-linked immobilized NAD+. The amino acid dehydrogenases were NAD+-dependent phenylalanine (EC 1.4.1.20), alanine (EC 1.4.1.1), and leucine (EC 1.4.1.9) dehydrogenases from various microbial species and NAD(P)+-dependent glutamate dehydrogenase from bovine liver (GDH; EC 1.4.1.3). KBECS for bovine heart L-lactate dehydrogenase (EC 1.1.1.27) and yeast alcohol dehydrogenase (EC 1.1.1.1) were also applied to assist in a preliminary assessment of the immobilized cofactor derivatives. Results confirm that the majority of the enzymes studied retained affinity for NAD+ immobilized through an N6 linkage, as opposed to an N1 linkage, replacement of the nitrogen with sulfur to produce an S6 linkage, or attachment of the cofactor through the C8 position or the pyrophosphate group of the cofactor. The one exception to this was the dual-cofactor-specific GDH from bovine liver, which showed no affinity for N6-linked NAD+ but was biospecifically adsorbed to S6-linked NAD+ derivatives in the presence of its soluble KBEC ligand. The molecular basis for this is discussed together with the implications for future development and application of KBECS.  相似文献   

9.
Sox6 regulation of cardiac myocyte development   总被引:4,自引:0,他引:4  
  相似文献   

10.
目的:建立人IL-6 /sIL-6R 结合的分子模型,用于筛选IL-6 /sIL-6R的抑制剂。方法:将人IL-6基因克隆至原核表达载体pET28a(+)中表达IL-6蛋白,western blot及人IL-6检测试剂盒分析鉴定表达蛋白。同法将人sIL-6R在pET15b载体中表达,纯化并用western blot检测目的蛋白。依据ELISA原理建立IL-6 /sIL-6R 结合的分子模型,并通过改变IL-6、sIL-6R及IL-6 antibody的浓度来优化该模型,用于IL-6 /sIL-6R拮抗药物的筛选。结果:人IL-6可在载体PET28a(+)中高效表达,且经western blot鉴定正确,人IL-6检测试剂盒检测显示具有较高的免疫活性。sIL-6R在PET15b中表达,western blot鉴定正确。通过对IL-6 /sIL-6R结合的分子模型的优化,得到其最佳条件为:IL-6R 1?g/well, IL-6 500ng/well, IL-6 antibody 1?g/well。应用该模型筛选发现有些化合物可显著抑制IL-6与其受体的结合。结论:成功构建IL-6 /sIL-6R结合的分子模型,为高通量筛选IL-6拮抗剂提供平台。  相似文献   

11.
12.
We examined TCR usage to a protective fragment of heat shock protein 60 from the fungus, Histoplasma capsulatum. Nearly 90% of T cell clones from C57BL/6 mice vaccinated with this protein were Vbeta6+; the remainder were Vbeta14+. Amino acid motifs of the CDR3 region from Vbeta6+ cells were predominantly IxGGG, IGG, or SxxGG, whereas it was uniformly SFSGG for Vbeta14+ clones. Short term T cell lines from Vbeta6+-depleted mice failed to recognize Ag, and no T cell clones could be generated. To determine whether Vbeta6+ cells were functionally important, we eliminated them during vaccination. Depletion of Vbeta6+ cells abrogated protection in vivo and upon adoptive transfer of cells into TCR alphabeta(-/-) mice. Transfer of a Vbeta6+, but not a Vbeta14+, clone into TCR alphabeta(-/-) mice prolonged survival. Cytokine generation by Ag-stimulated splenocytes from immunized mice depleted of Vbeta6+ cells was similar to that of controls. The efficacy of the Vbeta6+ clone was associated with elevated production of IFN-gamma, TNF-alpha, and GM-CSF compared with that of the Vbeta14+ clone. More Vbeta6+ cells were present in lungs and spleens of TCR alphabeta(-/-) on day 3 postinfection compared with Vbeta14+ cells. Thus, a single Vbeta family was essential for vaccine-induced immunity. Moreover, the mechanism by which Vbeta6+ contributed to protective immunity differed between unfractionated splenocytes and T cell clones.  相似文献   

13.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

14.
A Pekrun  S W Eber  W Schr?ter 《Blut》1989,58(1):11-14
Two new G6PD variants with severe enzyme deficiency in Switzerland (G6PD Avenches, G6PD I) and in Germany (G6PD Moosburg, G6PD II) are described. One patient had suffered from severe postpartal hyperbilirubinemia, the other one presented with chronic hemolysis and remittent hyperbilirubinemia. Both variants showed diminished electrophoretic mobility, both variants were heat labile. The Michaelis-Menten constants KM for glucose-6-phosphate and for NADP+ were normal. 2-Desoxy-glucose-6-phosphate was utilized by G6PD I in a higher and by G6PD II at a lower rate than by the normal enzyme. Desamino-NADP+ and galactose-6-phosphate were utilized by both variants at a normal rate. The electrophoretic separation of membrane proteins of G6PD II showed both in the presence and in the absence of 6-mercaptoethanol no difference concerning the formation of membrane protein aggregates between patient and normal control.  相似文献   

15.
Sorbitol-6-phosphate dehydrogenase from loquat fruit   总被引:4,自引:3,他引:1       下载免费PDF全文
Hirai M 《Plant physiology》1979,63(4):715-717
Sorbitol-6-phosphate dehydrogenase was found in flesh tissue of mature fruit of the loquat (Eriobotrya japonica Lindl. var. Tanaka). The enzyme was purified about 30-fold from the crude extract of the fruit, and was demonstrated to catalyze sorbitol-6-phosphate + NADP glucose-6-phosphate + NADPH. The optimal pH values for sorbitol 6-phosphate oxidation and glucose 6-phosphate reduction were 9.8 and 9.1, respectively.  相似文献   

16.
6-Phospho-D-gluconate:NAD+ 2-oxidoreductase (decarboxylating) (NAD+-6PGD) was detected in several slow-growing strains of rhizobia, and no activity involving NADP+ was found in the same extracts. By contrast, fast-growing strains of rhizobia had NADP+-6PGD activity; most of them also had NAD+-6PGD activity. NAD+-6PGD was partially purified from the slow-growing strain Rhizobium japonicum 5006. The reaction was shown to be an oxidative decarboxylation.  相似文献   

17.
C57BL/6J小鼠超数排卵的研究   总被引:9,自引:0,他引:9  
目的 确定C57BL 6J小鼠超排的最佳激素剂量和最合适的注射间隔时间 ,提高超排率。方法  40只C57BL 6J雌鼠随机分为四组 ,分别用 5IU或 10IU的PMSG和HCG ,间隔 48h或 72h注射 ,比较排出卵母细胞的数量。结果  5IU +5IU剂量的PMSG和HCG、间隔 48h注射组超排效果最好 ;8~ 10周龄雌鼠较 6~ 8周龄雌鼠超排效果好。结论 C57BL 6J小鼠超排的最佳激素剂量为 5IUPMSG +5IUHCG ,最合适的注射间隔时间为 48h ,处于繁殖期的雌鼠超排效果好。  相似文献   

18.
This study was carried out to investigate the various concentrations and exposure times of ethanol, one of many intracellular calcium elevating agents, and a sequential combination of ethanol (8%), cycloheximide (CHX, 10 microg/ml), cytochalasin B (CCB, 7.5 microg/ml) and 6-dimethylaminopurine (6-DMAP, 2 mM) to improve parthenogenetic activation and development of in vitro matured porcine oocytes. Cumulus-oocyte complexes (COCs) were matured in tissue culture medium (TCM) 199 for 44 h at 38.5 degrees C, 5% CO2 in air. Cumulus-free oocytes showing first polar body were activated by concentrations of 0, 5, 6, 7, 8, 9 and 10% ethanol for 10 min and exposure times of 0, 5, 8, 10, 12 and 15 min with 8% ethanol in HEPES buffered (25 mM) NCSU-23 medium. Also, oocytes were activated with the NCSU-23 medium containing 8% ethanol for 10 min. After that, oocytes were incubated in the NCSU-23 medium supplemented with CHX, CCB, 6-DMAP, CHX + CCB, CHX + 6-DMAP, CCB + 6-DMAP and CHX + CCB + 6-DMAP for 3h, respectively. Following activation, oocytes were transferred into the NCSU-23 medium containing 0.4% BSA for further culture of 20 and 144 h at 38.5 degrees C, 5% CO2 in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly, more oocytes (29.3-33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8-15 min. Oocytes treated by chemical agents (40.5-70.5%) after exposure to ethanol significantly improved the rate of oocyte activation compared with ethanol alone (31.2%). The percentage of cleaved oocytes was higher in the ethanol+CHX+CCB+6-DMAP treatment (66.4%) than in other treatments (24.9-57.6%). Also, the rate of blastocyst formation was higher in the ethanol+CHX+CCB+6-DMAP treatment (25.0%) than in other treatments (0.0-19.3%). In conclusion, the optimal activation treatment of ethanol exposure alone for the in vitro matured porcine oocytes was 8% ethanol for 8-15 min. Oocytes activated by 8% ethanol for 10 min and incubated in the NCSU-23 medium supplemented with CHX, CCB and 6-DMAP for 3 h were more efficient for parthenogenetic development of in vitro matured porcine oocytes.  相似文献   

19.
20.
Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号