首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The synthesis of 3′- and 5′-O-levulinyl nucleosidic monomers through enzymatic acylation with acetonoxime levulinate is demonstrated. The acylation process takes place in one-step and use of expensive reagents, such as DMTrCl is avoided. The regioselectivity of the procedure makes it very convenient for acylated monomers required for solution phase synthesis of oligonucleotides.  相似文献   

2.
A rapid and efficient strategy has been developed for the general synthesis of complex peptide aldehydes. N(alpha)-Benzyloxycarbonylamino acids were converted to protected aldehyde building blocks for solid-phase synthesis in four steps and moderate overall yields. The aldehydes were protected as 1,3-dioxolanes except for one case where a dimethyl acetal was used. These protected amino aldehyde monomers were then incorporated onto 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyryl-resin (BAL-PEG-PS) by reductive amination, following which the penultimate residue was introduced by HATU-mediated acylation. The resultant resin-bound dipeptide unit, anchored by a backbone amide linkage (BAL), was extended further by routine Fmoc chemistry procedures. Several model peptide aldehydes were prepared in good yields and purities. Some epimerization of the C-terminal residue occurred (10% to 25%), due to the intrinsic stereolability conferred by the aldehyde functional group, rather than any drawbacks to the synthesis procedure.  相似文献   

3.
We demonstrate the first solid-phase synthesis of highly functionalized bis-peptides. Bis-peptides are ladder oligomers composed of stereochemically pure, cyclic bis-amino acids joined by substituted diketopiperazine linkages. They have a shape-programmable backbone that is controlled by controlling the stereochemistry and sequence of the monomers within each oligomer. Functionalized bis-peptides are assembled using a new amide bond forming reaction (acyl-transfer coupling) that we have previously developed and a novel activation strategy that allows the sequential formation of penta- and hexa-substituted diketopiperazines from extremely hindered N-alkyl-alpha,alpha-disubstituted amino acids. We present mechanistic evidence that acyl-transfer coupling is competitive with direct acylation in the formation of hindered amide bonds. We also detail the synthesis of four functionalized bis-peptides, and that by combining bis-peptides with amino acids through diketopiperazine linkages, bis-peptides can mimic the display of residues i, i+4, i+7 of an alpha-helical peptide.  相似文献   

4.
Monitoring of acylation reactions during solid phase peptide synthesis is important to ensure high coupling yields in all steps of the synthesis. We describe in this paper a simple and reliable method for monitoring the time course of the acylation steps as well as the washing and deprotection steps during computer-controlled solid phase peptide synthesis. The method is based on the continuous measurement of electrical conductivity in the reaction vessel. It is shown that there is a close correspondence between the degree of acylation (as determined from the amount of 9-fluorenylmethoxycarbonyl- (Fmoc) groups released during deprotection) and the conductivity profile obtained during coupling of the amino acids to the growing peptide chain. The measurements are fed back to the computer providing data for software control of the duration of the acylation, deprotection and washing steps. The method is demonstrated with pentafluorophenol esters, but is equally applicable to dihydroxybenzotriazole esters and symmetric anhydrides using the Fmoc-polyamide strategy in a continuous flow set-up with dimethylformamide (DMF) as the general solvent.  相似文献   

5.
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.  相似文献   

6.
Penicillin G acylase (PGA) catalyzed acylation of 7-aminocephalosporanic acid (7-ACA) with R-mandelic acid and its derivatives gives 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid. This compound is a useful intermediate for the synthesis of some 3′-functionalized cephalosporins. However, acylations catalyzed by PGA isolated from Escherichia coli give poor results both considering a kinetical or a thermodynamical approach. In order to improve this enzymatic acylation, polyethylene glycol (PEG 600)-ammonium sulphate aqueous two-phase systems have been studied with the aim to have, during the reaction, a continuous extraction of the acylation product outside of the enzyme environment (the ammonium sulphate phase). This strategy shifts the equilibrium in the thermodynamically controlled synthesis and prevents the hydrolysis of the synthesized antibiotic in the kinetically controlled synthesis. The best results were achieved using PEG 600 (80% in water) equilibrated with 4 M ammonium sulphate. In these conditions, the acylation product was completely partitioned in the PEG phase (K > 200), whereas the substrates maintained a suitable concentration in the enzyme environment. Both in the kinetic (88% yield) and the thermodynamic (75% yield) processes, the results obtained were sensitively improved in comparison with those achieved working in homogeneous solution (phosphate buffer). Using R-mandelic acid methyl ester, the yield increased from 65% (monophasic system) to 88%. The PEG solution, without isolation of the acylation product, was successfully used for the synthesis of Cefamandole and Cefonicid.  相似文献   

7.
Esterase BioH is a critical enzyme for Biotin synthesis in Escherichia coli, which has been previously found to be active in the acylation of secondary alcohols and amines. Directed evolution towards improved acylation activity requires a high-throughput screening method. The aim of this study is to explore whether the acylation activity of BioH can be improved by directed evolution of its hydrolysis activity. A colorimetric method based on p-nitrophenyl butyrate hydrolysis was adopted in the high-throughput determination of hydrolysis activity. The wild-type BioH showed a hydrolysis activity of 18 U/mg, and the specific activities for α-phenylethanol and α-phenylethylamine acylation were 12.8 U/mg and 3.5 U/mg, respectively. After two rounds of directed evolution, seven mutants with improved hydrolysis activity were obtained, among which, K213E, Q70L/M170T and M197L/K213E also showed improvement in acylation activity. To further improve the acylation activity, site mutations were generated in different combinations at the four hot spots Q70L, M170T, M197L and K213E. Among the resulting mutants, Q70L/M197L/K213E showed the highest activity in α-phenylethylamine acylation with a 120% improvement, while Q70L/K213E had the highest α-phenylethanol acylation activity, which was improved by 70%. The results demonstrated that directed evolution of the hydrolysis activity might be a possible approach to improve the acylation activity of the esterase BioH.  相似文献   

8.
An efficient synthesis of C2-symmetric chiral binaphthyl ketones 1a and b, effective catalysts for asymmetric epoxidation, is reported. The key features of this synthesis are Co(salen)-catalyzed macrolactonization of racemic 1,1'-binaphthyl-2,2'-dicarboxylic acid monoglycidyl esters 3a and b and lipase-catalyzed enantioselective acylation of resulting 11-membered cyclic binaphthyl alcohols 4a and b.  相似文献   

9.
Bioprocess and Biosystems Engineering - A method for the synthesis of β-lactam antibiotic cefazolin (CEZ) by enzymatic acylation of...  相似文献   

10.
We report recent developments in the optimization of a submonomer synthesis of peptide nucleic acid based on the Fukuyama-Mitsunobu reaction. The key steps in the submonomer synthesis are the installation of an appropriately protected 2-aminoethyl group on the alpha-nitrogen of an amino acid and its subsequent acylation with a protected nucleobase derivative. The aggressive alkylation conditions require a scheme of maximal protection for the nucleobases and that is proposed herein for the pyrimidines.  相似文献   

11.
In this study, benzyl benzoate was successfully synthesized via enzymatic acylation using three immobilized enzymes as biocatalysts. Different acyl donors (benzoic acid and benzoic anhydride), operation regimes (batch, fed-batch), mixing modes (conventional mechanical stirring and ultrasound), process parameters (temperature, substrate molar ratio of acyl donor to acyl acceptor), presence or absence of solvents, enzyme amount and type were evaluated. Benzoic acid is a solid that is difficult to solubilize and, thus, was not efficient as acyl donor for the synthesis of benzyl benzoate. On the other hand, benzoic anhydride was very effective for the acylation of benzyl benzoate, and the presence of an excess of benzyl alcohol was essential to ensure the solute-solvent intermolecular attractions and good substrate solubilization, allowing the ester synthesis to be performed in the absence of organic solvents. The ultrasound was effective in increasing increase the initial reaction rate and the final conversion (88 %). However, the Lipozyme TL-IM and RM-IM supports were damaged, and the reuse was unfeasible. The batch and fed-batch approaches in conventional stirring ensured high conversions of 92 and 90 %, respectively, for batch (anhydride: alcohol 1:6) and fed-batch (1:3) using the Lipozyme TL-IM as biocatalyst. The controlled addition of the anhydride (fed-batch) allowed the reduction of alcohol molar ratio but decreased the reaction rates, and the maximum conversions were reached only after 24 h, while the batch approach had 92 % of conversion after 6 h. The yield of benzyl benzoate was high at 6 wt.% of enzyme, low temperature (50 °C), and simple reactor operation (batch). Results show the feasibility of the synthesis of benzyl benzoate via acylation using a green process that may be an alternative route to the chemical synthesis.  相似文献   

12.
A novel pathway for lipid biosynthesis: the direct acylation of glycerol.   总被引:3,自引:0,他引:3  
The acylation of glycerol-3-phosphate by acyl-CoA is regarded as the first committed step for the synthesis of the lipoidal moiety in glycerolipids. The direct acylation of glycerol in mammalian tissues has not been demonstrated. In this study, lipid biosynthesis in myoblasts and hepatocytes was reassessed by conducting pulse-chase experiments with [1,3-(3)H]glycerol. The results demonstrated that a portion of labeled glycerol was directly acylated to form monoacylglycerol and, subsequently, diacylglycerol and triacylglycerol. The direct acylation of glycerol became more prominent when the glycerol-3-phosphate pathway was attenuated or when exogenous glycerol levels became elevated. Glycerol:acyl-CoA acyltransferase activity, which is responsible for the direct acylation of glycerol, was detected in the microsomal fraction of heart, liver, kidney, skeletal muscle, and brain tissues. The enzyme from pig heart microsomes displayed optimal activity at pH 6.0 and the preference for arachidonyl-CoA as the acyl donor. The apparent K(m) values for glycerol and arachidonyl-CoA were 1.1 mM and 0.17 mM, respectively. The present study demonstrates the existence of a novel lipid biosynthetic pathway that may be important during hyperglycerolemia produced in diabetes or other pathological conditions.  相似文献   

13.
A facile control of the acylation position at the primary hydroxyl and amino of acyclovir, respectively, was achieved and five polymerizable acyclovir prodrugs were synthesized. Various reaction conditions were studied in detail. Thus, lipase acrylic resin from Candida antarctica (CAL-B) in pyridine or acetone showed high chemo-selectivity toward the primary hydroxyl of acyclovir. However, lipase PS 'Amano' (PS) in DMSO selectively acylated the amino group. The selectivity of PS could be adjusted by changing reaction solvents. The acyclovir vinyl derivatives obtained would be important monomers used for the preparation of macromolecular nucleoside drugs.  相似文献   

14.
Lu YJ  Zhang YM  Grimes KD  Qi J  Lee RE  Rock CO 《Molecular cell》2006,23(5):765-772
It is not known how Gram-positive bacterial pathogens carry out glycerol-3-phosphate (G3P) acylation, which is the first step in the formation of phosphatidic acid, the key intermediate in membrane phospholipid synthesis. In Escherichia coli, acylation of the 1-position of G3P is carried out by PlsB; however, the majority of bacteria lack a plsB gene and in others it is not essential. We describe a two-step pathway that utilizes a new fatty acid intermediate for the initiation of phospholipid formation. First, PlsX produces a unique activated fatty acid by catalyzing the synthesis of fatty acyl-phosphate from acyl-acyl carrier protein, and then PlsY transfers the fatty acid from acyl-phosphate to the 1-position of G3P. The PlsX/Y pathway defines the most widely distributed pathway for the initiation of phospholipid formation in bacteria and represents a new target for the development of antibacterial therapeutics.  相似文献   

15.
An effective procedure for the synthesis of ribonucleotide monomers containing a 2 '-О-methoxymethyl-modifying group was developed. These monomers were used for the synthesis of RNA fragments by the solid-phase phosphotriester method under O-nucleophilic intramolecular catalysis. The properties of 2 '-О-methoxymethyl-containing oligoribonucleotides were examined.  相似文献   

16.
T K Ray  J E Cronan  Jr 《Journal of bacteriology》1987,169(6):2896-2898
The inhibition of phospholipid synthesis engendered by starving glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli (plsB or gpsA) for G3P is incomplete; 5 to 10% of the normal rate of phospholipid synthesis remains, even after prolonged starvation. We report that G3P starvation of a strain having lesions in both the gpsA and plsB genes resulted in essentially complete (greater than 98.5%) inhibition of phospholipid synthesis, indicating that all de novo glycerolipid synthesis in E. coli proceeds by acylation of G3P.  相似文献   

17.
The synthesis of uridine monomers containing either a 2'-deoxy-2'-C-methylcyano or ethylcyano group is described. These monomers are intended for incorporation into oligonucleotides to investigate a proposed duplex-stabilising effect exerted by 2'-tethered amide groups.  相似文献   

18.
An effective procedure for the synthesis of ribonucleotide monomers containing a 2 ′-О-methoxymethyl-modifying group was developed. These monomers were used for the synthesis of RNA fragments by the solid-phase phosphotriester method under O-nucleophilic intramolecular catalysis. The properties of 2 ′-О-methoxymethyl-containing oligoribonucleotides were examined.  相似文献   

19.
Pseudo-complementary peptide nucleic acid (pcPNA) is a DNA analog in which modified DNA bases 2,6-diaminopurine (D) and 2-thiouracil (U(s)) 'decorate' a poly[N-(2-aminoethyl)glycine] backbone, together with guanine (G) and cytosine (C). One of the most significant characteristics of pcPNA is its ability to effect double-duplex invasion of predetermined DNA sites inducing various changes in the biological and the physicochemical properties of the DNA. This protocol describes solid-phase synthesis of pcPNA. The monomers for G and C are commercially available, but the monomers for D and U(s) need to be synthesized (or can be ordered to custom synthesis companies). Otherwise, the procedure is the same as that employed for Boc-strategy synthesis of conventional PNA. This protocol, if the synthesis of D and U(s) monomers is not factored in, takes approximately 7 d to complete.  相似文献   

20.
We studied the regulation of triacylglycerol (TAG) metabolism by phosphatidylcholine (PC) in CHO MT58 cells, which are deficient in PC synthesis because of a temperature-sensitive CTP:phosphocholine cytidylyltransferase. At the permissive growth temperature (34 degrees C), these cells contained 49% less TAG and 30% less PC than wild-type CHO K1 cells. Treatment with dipalmitoylphosphatidylcholine normalized both the PC and TAG levels. Despite low TAG levels, the incorporation of [14C]oleate into TAG was increased in CHO MT58 cells. The in vitro de novo synthesis of TAG and the activity of diacylglycerol acyltransferase were 90% and 34% higher, respectively. Two other key enzyme activities in TAG synthesis, acyl-CoA synthetase and mitochondrial glycerol-3-phosphate acyltransferase (GPAT), increased by 48% and 2-fold, respectively, and mitochondrial GPAT mRNA increased by approximately 4-fold. Additionally, TAG hydrolysis was accelerated in CHO MT58 cells, and in vitro lipolytic activity increased by 68%. These studies suggest that a homeostatic mechanism increases TAG synthesis and recycling in response to PC deficiency. TAG recycling produces diacylglycerol and fatty acids that can be substrates for de novo PC synthesis and for lysophosphatidylcholine (lysoPC) acylation. In CHO MT58 cells, in which de novo PC synthesis is blocked, lysoPC acylation with fatty acid originating from TAG may represent the main pathway for generating PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号