首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

ENATM antisense oligonucleotides for vascular endothelial growth factor (VEGF) mRNA were synthesized and evaluated in A549 lung cancer cells. It was found that the VEGF ENA-antisense inhibited not only the expression of VEGF, but also the expression of three genes, which were found in Genbank by BLAST and Clustal W search and considered likely to bind to the VEGF ENA-antisense. These results indicate that ENA-antisense oligonucleotides act in a sequence-specific manner, and could be used as effective antisense drugs.  相似文献   

2.
3.
Early induction of VEGF was studied in liver, kidney and lung of spontaneously diabetic rats. Western blot analysis, northern hybridization were applied to show the expression of VEGF in different organs. Radiolabelled hypoxia responsive element (HRE) and cAMP responsive element (CRE) oligonucleotides were assayed by electrophoretic mobility shift (EMSA) or supershift using anti ARNT and anti CREB-1 monoclonal antibodies. An increase in VEGF expression at the level of protein and mRNA was demonstrated at the beginning of the disease. EMSAs showed: a.) a binding of HIF-1 to HRE and/or CRE, b.) in the same time the binding of CREB- I was detected to both HRE and/or CRE sequences in the liver, kidney and lung of diabetic animals. Based on these in vivo observations it is supposed that HRE and CRE through the interaction between HIF-1 and CREB-1 are equally involved in the regulation of VEGF expression at the onset of diabetes.  相似文献   

4.
Considerable evidence is gathering for the involvement of vascular endothelial growth factor (VEGF) in the vascularization and growth of primary tumours as well as in the formation of metastases. The expression of VEGF depends on activated oncogenes and inactivated tumour suppressor genes as well as several other factors (e.g. growth factors, tumour promoters and hypoxia). Substantial expression of the receptors for VEGF is restricted mainly to the tumour blood vessels. The causal involvement of this angiogenic factor in the progression of disease has been successfully evaluated by means of monoclonal antibodies against VEGF, dominant-negative receptor mutants and the use of antisense oligonucleotides against the VEGF mRNA. Thus, the VEGF signalling system seems to be an appropriate target to inhibit tumour angiogenesis and metastases formation.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is implicated in the development of proteinuria in diabetic nephropathy. High ambient glucose present in diabetes stimulates VEGF expression in several cell types, but the molecular mechanisms are incompletely understood. Here primary cultured rat mesangial cells served as a model to investigate the signal transduction pathways involved in high-glucose-induced VEGF expression. Exposure to high glucose (25 mM) significantly increased VEGF mRNA evaluated by real-time PCR by 3 h, VEGF cellular protein content assessed by immunoblotting or immunofluorescence within 24 h, and VEGF secretion by 24 h. High-glucose-induced VEGF expression was blocked by an antioxidant, Tempol, and antisense oligonucleotides directed against p22(phox), a NADPH oxidase subunit. Inhibition of protein kinase C (PKC)-beta(1) with the specific pharmacological inhibitor LY-333531 or inhibition of PKC-zeta with a cell permeable specific pseudosubstrate peptide also prevented enhanced VEGF expression in high glucose. Enhanced VEGF secretion in high glucose was prevented by Tempol, PKC-beta(1), or PKC-zeta inhibition. In normal glucose (5.6 mM), overexpression of p22(phox) or constitutively active PKC-zeta enhanced VEGF expression. Hypoxia inducible factor-1alpha protein was significantly increased in high glucose only by 24 h, suggesting a possible contribution to high-glucose-stimulated VEGF expression at later time points. Thus reactive oxygen species generated by NADPH oxidase, and both PKC-beta(1) and -zeta, play important roles in high-glucose-stimulated VEGF expression and secretion by mesangial cells.  相似文献   

6.
The precise role of vascular endothelial growth factor (VEGF) in regulating integrins in brain microvascular endothelial cells is unknown. Here, we analyzed VEGF effects on integrin expression and activation in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and ribonuclease (RNase) protection assays, we observed that VEGF up-regulated the mRNA expression of alpha(6) integrin in HBMECs. VEGF significantly increased alpha(6)beta(1) integrin expression, but not alpha(6)beta(4) integrin expression in these cells. Specific down-regulation of alpha(6) integrin expression by small interfering RNA (siRNA) oligonucleotides inhibited both the capillary morphogenesis of HBMECs and their adhesion and migration. Additionally, VEGF treatment resulted in activation of alpha(6)beta(1) integrins in HBMECs. Functional blocking of alpha(6) integrin with its specific antibody inhibited the VEGF-induced adhesion and migration as well as in vivo angiogenesis, and markedly suppressed tumor angiogenesis and breast carcinoma growth in vivo. Thus, VEGF can modulate angiogenesis via increased expression and activation of alpha(6)beta(1) integrins, which may promote VEGF-driven tumor angiogenesis in vivo.  相似文献   

7.
8.
凝胶基片的制备与应用研究   总被引:2,自引:1,他引:1  
在Bind-SilaneR处理的玻片上交联聚丙烯酰胺凝胶层(15mm×15mm×20μm),戊二醛活化。与末端氨基修饰的寡核苷酸片段共价结合制成芯片。这种芯片能够区分液相中序列不同的Cy3标记的目标核酸。与平面基片相比,凝胶基片具有背景低、固定探针量高、杂交时间短的优点。将细胞因子IL-4、IL-5、IL-6、IL-7、ANG、I-309和VEGF的单克隆抗体加样于凝胶基片上制成蛋白质芯片,对乳腺癌患者和正常人的血清进行检测,发现乳腺癌患者细胞因子IL-4、IL-5、I-309和VEGF的表达量高于正常人的表达量,对临床诊断具有重要的参考意义。  相似文献   

9.
Cytochrome P-450 (CYP) epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acid (EET) regioisomers, which activate several signaling pathways to promote endothelial cell proliferation, migration, and angiogenesis. Since vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, we assessed a possible role of EETs in the VEGF-activated signal transduction cascade. Stimulation with VEGF increased CYP2C promoter activity in endothelial cells and enhanced CYP2C8 mRNA and protein expression resulting in increased intracellular EET levels. VEGF-induced endothelial cell tube formation was inhibited by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoicacid (14,15-EEZE), which did not affect the VEGF-induced phosphorylation of its receptor or basic fibroblast growth factor (bFGF)-stimulated tube formation. Moreover, VEGF-stimulated endothelial cell sprouting in a modified spheroid assay was reduced by CYP2C antisense oligonucleotides. Mechanistically, VEGF stimulated the phosphorylation of the AMP-activated protein kinase (AMPK), which has also been linked to CYP induction, and the overexpression of a constitutively active AMPK mutant increased CYP2C expression. On the other hand, a dominant-negative AMPK mutant prevented the VEGF-induced increase in CYP2C RNA and protein expression in human endothelial cells. In vivo (Matrigel plug assay) in mice, endothelial cells were recruited into VEGF-impregnated plugs; an effect that was sensitive to 14,15-EEZE and the inclusion of small interfering RNA directed against the AMPK. The EET antagonist did not affect responses observed in plugs containing bFGF. Taken together, our data indicate that CYP2C-derived EETs participate as second messengers in the angiogenic response initiated by VEGF and that preventing the increase in CYP expression curtails the angiogenic response to VEGF.  相似文献   

10.
We investigated 2'-O,4'-C-ethylene-bridged nucleic acids (ENA) antisense oligonucleotides (AONs) for vascular endothelial growth factor (VEGF) in human lung carcinoma A549 cells. An ENA/DNA gapmer AON with RNase H-mediated activity was virtually stable in rat plasma and exhibited more than 90% inhibition of VEGF mRNA production. Moreover, 22 genes that are likely to bind to the AON were found in the GenBank database by BLAST and CLUSTAL W searches. Three of these genes were actually inhibited by the ENA AON. In shorter ENA AONs with fewer matched sequences of these genes, inhibitiory activities were decreased and off-target effects were improved. These results indicate that ENA AONs act in a sequence-specific manner and could be used as effective antisense drugs.  相似文献   

11.
Vascular endothelial growth factor (VEGF)-induced endothelial cell migration is a key step in the angiogenic response and is mediated, in part, by an accelerated rate of focal adhesion complex assembly and disassembly. We investigated the signaling pathway by which VEGF regulates focal adhesion complex assembly by examining the signaling proteins involved. VEGF stimulated the tyrosine phosphorylation of the SH2 domain-containing signaling proteins NCK and CRK in human umbilical vein endothelial cells. The signaling pathways that couple the kinase insert domain-containing receptor to NCK and CRK is most likely mediated by another cellular protein, as NCK and CRK were tyrosine-phosphorylated in response to VEGF in cells expressing receptors mutated at each of several candidate SH2 domain-interacting cytosolic tyrosines. In the absence of VEGF treatment, NCK (but not CRK) associated with the p21 GTPase-activated kinase PAK. PAK catalytic activity was augmented after VEGF treatment; an association of PAK with 60- and 90-kDa tyrosine-phosphorylated proteins accompanied this. VEGF stimulated the recruitment of PAK to focal adhesions, and FAK immunoprecipitated with both NCK and PAK in VEGF-treated (but not untreated) human umbilical vein endothelial cells. Inhibition of NCK protein expression using antisense oligonucleotides led to the inhibition of both VEGF-induced focal adhesion assembly and VEGF-induced cell migration, demonstrating a necessary role of NCK in these cellular responses.  相似文献   

12.
The regulation of vascular endothelial growth factor (VEGF), a potent stimulator of angiogenesis, is controlled primarily through the interactions of control elements located within the 5'- and 3'-untranslated regions, many of which are yet to be described. In this study we examined the 5'-untranslated region of human VEGF for control elements with the aim of regulating expression both in vitro and in vivo using oligonucleotide gene therapy. A potential control element was located, two sense oligonucleotides (S(1) and S(2)) were designed based on its sequence, and a third oligonucleotide (S(3)) was designed as a control and mapped to the 16 base pairs immediately upstream. Retinal cells cultured in the presence of S(1) and S(2) resulted in a 2-fold increase of VEGF protein and a 1.5-fold increase in mRNA 24 h post-transfection whereas S(3) had no significant effect (p > 0.05) compared with controls. Subsequent reporter gene studies confirmed the necessity of this element for up-regulation by S(1). Further in vivo studies showed that S(1) and S(2) mediated an increase in VEGF protein in a rodent ocular model that resulted in angiogenesis. In addition to providing insight into the regulation of the vascular endothelial growth factor, the use of these oligonucleotides to stimulate vascular growth may prove useful for the treatment of ischemic tissues such as those found in the heart following infarct.  相似文献   

13.
14.
15.
16.
17.

We investigated 2 ′-O,4 ′-C-ethylene-bridged nucleic acids (ENA) antisense oligonucleotides (AONs) for vascular endothelial growth factor (VEGF) in human lung carcinoma A549 cells. An ENA/DNA gapmer AON with RNase H-mediated activity was virtually stable in rat plasma and exhibited more than 90% inhibition of VEGF mRNA production. Moreover, 22 genes that are likely to bind to the AON were found in the GenBank database by BLAST and CLUSTAL W searches. Three of these genes were actually inhibited by the ENA AON. In shorter ENA AONs with fewer matched sequences of these genes, inhibitiory activities were decreased and off-target effects were improved. These results indicate that ENA AONs act in a sequence-specific manner and could be used as effective antisense drugs.  相似文献   

18.
In its role as an endothelial cell proliferation and migration factor, vascular endothelial growth factor (VEGF) can affect peripheral circulation and therefore impact maximal oxygen consumption (Vo2 max). Because of the role of VEGF, and because variation in the VEGF gene has the ability to alter VEGF gene expression and VEGF protein level, we hypothesized that VEGF gene polymorphisms are related to VEGF gene expression in human myoblasts and Vo2 max before and after aerobic exercise training. We analyzed the effects of the VEGF -2578/-1154/-634 promoter region haplotype on VEGF gene expression by using a luciferase reporter assay in cultured human myoblasts and found that the AAG and CGC haplotypes resulted in significantly higher hypoxia-stimulated VEGF gene expression than the AGG and CGG haplotypes. Consistent with these results, we found that individuals with at least one copy of the AAG or CGC haplotype had higher Vo2 max before and after aerobic exercise training than did subjects with only the AGG and/or CGG haplotype. In conclusion, we found that VEGF -2578/-1154/-634 haplotype impacts VEGF gene expression in human myoblasts and is associated with Vo2 max. These results have potential implications for aerobic exercise training and may prove relevant in the study of pathological conditions that can be affected by angiogenesis, such as coronary artery disease and peripheral artery disease.  相似文献   

19.
Vascular endothelial growth factor (VEGF) gene gives rise to several distinct isoforms of VEGF. Those isoforms differ in biochemical and biological properties, and it has been reported that their expression patterns are tissue and age specific as well. We investigated the expression levels of VEGF isoforms (VEGF121, VEGF165, VEGF183, VEGF189) and its receptors (VEGFR-1, flt-1 and VEGFR-2, flk-1/KDR) in the anterior cruciate ligament (ACL) of 2- to 3-week-, 2-month-, and 18-month-old New Zealand White rabbits using Sybr green Real-Time RT-PCR. VEGF isoforms and both receptors were expressed in the ACL at all investigated ages. VEGF121 was found to be the most abundant isoform at the ages under investigation, followed by VEGF165, VEGF189 and VEGF183. All isoforms showed decreased expression levels with age, however the larger membrane bound isoforms, VEGF183 and VEGF189, showed the most striking age-associated decrease in expression level. VEGFR-1 expression levels increased with age, while the expression level of VEGFR-2 expression was highest at 2-3 weeks and was significantly lower at 2 and 18 months of age. Distinct age-associated differences in the expression level of VEGF isoforms as well as their receptors suggest differential physiological functions during development, maturation and ageing of the ACL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号