首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.  相似文献   

2.
In fever, as in normal thermoregulation, signals from the preoptic area drive both cutaneous vasoconstriction and thermogenesis by brown adipose tissue (BAT). Both of these responses are mediated by sympathetic nerves whose premotor neurons are located in the medullary raphé. EP3 receptors, key prostaglandin E2 (PGE2) receptors responsible for fever induction, are expressed in this same medullary raphé region. To investigate whether PGE2 in the medullary raphé might contribute to the febrile response, we tested whether direct injections of PGE2 into the medullary raphé could drive sympathetic nerve activity (SNA) to BAT and cutaneous (tail) vessels in anesthetized rats. Microinjections of glutamate (50 mM, 60-180 nl) into the medullary raphé activated both tail and BAT SNA, as did cooling the trunk skin. PGE2 injections (150-500 ng in 300-1,000 nl) into the medullary raphé had no effect on tail SNA, BAT SNA, body temperature, or heart rate. By contrast, 150 ng PGE2 injected into the preoptic area caused large increases in both tail and BAT SNA (+60 +/- 17 spikes/15 s and 1,591 +/- 150% of control, respectively), increased body temperature (+1.8 +/- 0.2 degrees C), blood pressure (+17 +/- 2 mmHg), and heart rate (+124 +/- 19 beats/min). These results suggest that despite expression of EP3 receptors, neurons in the medullary raphé are unable to drive febrile responses of tail and BAT SNA independently of the preoptic area. Rather, they appear merely to transmit signals for heat production and heat conservation originating from the preoptic area.  相似文献   

3.
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.  相似文献   

4.
To elucidate the central neural pathways contributing to the thermogenic component of the autonomic response to intravenous administration of leptin, experiments were conducted in urethane-chloralose-anesthetized, ventilated rats to address 1) the role of neurons in the rostral ventromedial medulla, including raphe pallidus (RPa), in the leptin-evoked stimulation of brown adipose tissue (BAT) sympathetic nerve activity (SNA); and 2) the potential thermolytic effect of 5-hydroxytryptamine(1A) (5-HT(1A)) receptors on RPa neurons that influence BAT thermogenesis. Leptin (1 mg/kg) administration increased BAT SNA by 1,219% of control, BAT temperature by 2.8 degrees C, expired CO(2) by 1.8%, heart rate by 90 beats/min, and mean arterial pressure by 12 mmHg. Microinjection of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into RPa resulted in a prompt and sustained reversal of the leptin-evoked stimulation of BAT SNA, BAT thermogenesis, and heart rate, with these variables returning to their pre-leptin control levels. Subsequent microinjection of the selective 5-HT(1A) receptor antagonist WAY-100635 into RPa reversed the BAT thermolytic effects of 8-OH-DPAT, returning BAT SNA and BAT temperature to the elevated levels after leptin. In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA, BAT thermogenesis, and heart rate stimulated by intravenous administration of leptin. Neurons in RPa express 5-HT(1A) receptors whose activation leads to reversal of the BAT thermogenic and the cardiovascular responses to intravenous leptin, possibly through hyperpolarization of local sympathetic premotor neurons. These results contribute to our understanding of central neural substrates for the augmented energy expenditure stimulated by leptin.  相似文献   

5.
In urethane/α-chloralose anesthetized rats, cold exposure increased brown adipose tissue sympathetic nerve activity (BAT SNA: +699 ± 104% control). Intravenous administration of 2-deoxy-D-glucose (2-DG; 200 mg·ml(-1)·kg(-1)) reversed the cold-evoked activation of BAT SNA (nadir: 139 ± 36% of control) and decreased BAT temperature (-1.1 ± 0.2°C), expired CO(2) (-0.4 ± 0.1%), and core temperature (-0.5 ± 0.0). Similarly, unilateral nanoinjection of the glucoprivic agent 5-thioglucose (5-TG; 12 μg/100 nl) in the ventrolateral medulla (VLM) completely reversed the cold-evoked increase in BAT SNA (nadir: 104 ± 7% of control), and decreased T(BAT) (-1.4 ± 0.3°C), expired CO(2) (-0.2 ± 0.0%), and heart rate (-35 ± 10 beats/min). The percentage of rostral raphé pallidus (RPa)-projecting neurons in the dorsal hypothalamic area/dorsomedial hypothalamus that expressed Fos in response to cold exposure (ambient temperature: 4-10°C) did not differ between saline (28 ± 6%) and 2-DG (30 ± 5%) pretreated rats, whereas the percentage of spinally projecting neurons in the RPa/raphé magnus that expressed Fos in response to cold exposure was lower in 2-DG- compared with saline-pretreated rats (22 ± 6% vs. 42 ± 5%, respectively). The increases in BAT SNA evoked by nanoinjection of bicuculline in the RPa or by transection of the neuraxis at the pontomedullary border were resistant to inhibition by glucoprivation. These results suggest that neurons within the VLM play a role in the glucoprivic inhibition of BAT SNA and metabolism, that this inhibition requires neural structures rostral to the pontomedullary border, and that this inhibition is mediated by a GABAergic input to the RPa.  相似文献   

6.
1. The rostral medullary raphe pallidus contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT).

2. Disinhibition of neurons in the dorsomedial hypothalamus (DMH) stimulates BAT thermogenesis through activation of neurons in raphe pallidus.

3. An increase in BAT sympathetic outflow and BAT thermogenesis following microinjection of prostaglandin E2 into the preoptic area requires activation of both DMH neurons and raphe pallidus neurons.

4. DMH contains a population of neurons receiving a tonically- active GABAergic inhibition which mediate increases in BAT thermogenesis through stimulation of BAT sympathetic premotor neurons in raphe pallidus.  相似文献   


7.
Neurons in the dorsomedial hypothalamus (DMH) play key roles in physiological responses to exteroceptive ("emotional") stress in rats, including tachycardia. Tachycardia evoked from the DMH or seen in experimental stress in rats is blocked by microinjection of the GABA(A) receptor agonist muscimol into the rostral raphe pallidus (rRP), an important thermoregulatory site in the brain stem, where disinhibition elicits sympathetically mediated activation of brown adipose tissue (BAT) and cutaneous vasoconstriction in the tail. Disinhibition of neurons in the DMH also elevates core temperature in conscious rats and sympathetic activity to least significant difference interscapular BAT (IBAT) and IBAT temperature in anesthetized preparations. The latter effects are blocked by microinjection of muscimol into the rRP, while microinjection of muscimol into either the rRP or DMH suppresses increases in sympathetic nerve activity to IBAT, IBAT temperature, and core body temperature elicited either by microinjection of PGE(2) into the preoptic area (an experimental model for fever), or central administration of fentanyl. Neurons concentrated in the dorsal region of the DMH project directly to the rRP, a location corresponding to that of neurons trans-synaptically labeled from IBAT. Thus these neurons control nonshivering thermogenesis in rats, and their activation signals its recruitment in diverse experimental paradigms. Evidence also points to a role for neurons in the DMH in thermoregulatory cutaneous vasoconstriction, shivering, and endocrine adjustments. These directions provide intriguing avenues for future exploration that may expand our understanding of the DMH as an important hypothalamic site for the integration of autonomic, endocrine, and behavioral responses to diverse challenges.  相似文献   

8.
Chao PT  Yang L  Aja S  Moran TH  Bi S 《Cell metabolism》2011,13(5):573-583
Hypothalamic neuropeptide Y (NPY) has been implicated in control of energy balance, but the physiological importance of NPY in the dorsomedial hypothalamus (DMH) remains unclear. Here we report that knockdown of NPY expression in the DMH by adeno-associated virus-mediated RNAi reduced fat depots in rats fed regular chow and ameliorated high-fat diet-induced hyperphagia and obesity. DMH NPY knockdown resulted in development of brown adipocytes in inguinal white adipose tissue through the sympathetic nervous system. This knockdown increased uncoupling protein 1 expression in both inguinal fat and interscapular brown adipose tissue (BAT). Consistent with the activation of BAT, DMH NPY knockdown increased energy expenditure and enhanced the thermogenic response to a cold environment. This knockdown also increased locomotor activity, improved glucose homeostasis, and enhanced insulin sensitivity. Together, these results demonstrate critical roles of DMH NPY in body weight regulation through affecting food intake, body adiposity, thermogenesis, energy expenditure, and physical activity.  相似文献   

9.
Mu-opioid receptor activation increases body temperature and affects cardiovascular function. In the present study, fentanyl was administered intravenously [100 mug/kg (300 nmol/kg) iv] and intracerebroventricularly [3.4 mug (10 nmol) in 10 microl icv] in urethane-chloralose-anesthetized, artificially ventilated rats. Increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA) (peak, +326% of control), BAT temperature (peak, +0.8 degrees C), renal SNA (peak, +146% of control), and heart rate (HR; peak, +32 beats/min) produced by intravenous fentanyl were abolished by premamillary transection of the neuraxis but were mimicked by intracerebroventricular administration of fentanyl, which also increased arterial pressure (AP; peak, +12 mmHg). Pretreatment with the opioid antagonist naloxone (100 nmol in 10 microl icv) eliminated the intracerebroventricular fentanyl-evoked responses. Microinjection of glycine (0.5 M, 60 nl) to inhibit local neurons in the rostral raphe pallidus (RPa) selectively reversed the intracerebroventricular fentanyl-evoked increases in BAT SNA and HR, while the fentanyl-evoked excitation in RSNA, the pressor responses, and the tachycardic responses were reversed by inhibition of neurons in the rostral ventrolateral medulla (RVLM). Prior inhibition of neurons in the dorsomedial hypothalamus eliminated the intracerebroventricular fentanyl-evoked increases in BAT SNA, BAT temperature, and HR, but not those in RSNA or AP. These results indicate that activation of central mu-opioid receptors with fentanyl can elicit BAT thermogenesis and cardiovascular stimulation through excitation of the sympathetic outflows to BAT, kidney, and heart. Activation of neurons in the rostral RPa and RVLM are essential for the increases in BAT thermogenesis and renal sympathoexcitation, respectively, induced by activation of central mu-opioid receptors. BAT thermogenesis could contribute to fentanyl-evoked hyperthermia, particularly in infants where BAT plays a significant role in thermoregulation.  相似文献   

10.
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited similar tachycardic (+51 and +45 beats/min, respectively) and pressor (+16 and +9 mmHg, respectively) responses in conscious rabbits. Bilateral microinjection of GABA(A) agonist muscimol (500 pmol) into the DMH, but not nearby hypothalamic regions, attenuated pressor and tachycardic responses to air-jet by 56-63% and evoked anorexia. Conversely, stimulation of the DMH with the glutamate analog kainic acid (250 pmol) elicited hypertension (+25 mmHg) and tachycardia (+114 beats/min) and activated feeding behavior. Local microinjection of a glutamate receptor antagonist, kynurenic acid (10 nmol), decreased pressor responses to stress and eating by 46 and 72%, respectively, without affecting feeding behavior. Bilateral microinjection of a selective AT(1)-receptor antagonist, candesartan (500 pmol), into the DMH, but not nearby sites, attenuated pressor and tachycardic stress responses by 31 and 33%, respectively. Candesartan did not alter feeding behavior or circulatory response to feeding. These results indicate that, in addition to its role in mediating stress responses, the DMH may be important in regulating cardiovascular arousal associated with feeding. Local glutamatergic inputs appear to regulate cardiovascular response to both stress and feeding. Conversely, angiotensin II, acting via AT1 receptors, may selectively modulate, in the DMH, cardiovascular response to stress, but not feeding.  相似文献   

11.
12.
The activity of brown adipose tissue (BAT), a site of nonshivering metabolic thermogenesis, has been reported to increase after interleukin (IL)-1beta/lipopolysaccharide injection. To clarify the possible contribution of BAT thermogenesis to whole body febrile response, we investigated febrile and thermogenic response to IL-1beta using mice deficient in uncoupling protein-1 (UCP1), a key molecule for BAT thermogenesis. In wild-type (WT) mice, IL-1beta injection (5 microg/kg ip) increased body temperature (+1.82 degrees C at 20 min), decreased physical activity (-37% at 1 h), and produced a slight and insignificant rise (+15% at 1 h) in oxygen consumption (Vo(2)). Vo(2) dependent on metabolic thermogenesis (DeltaVO2 thermogenesis) calculated by correcting the effect of physical activity was increased after IL-1beta injection (726 +/- 200 ml x h(-1) x kg(-1) at 1 h). Almost the same responses were observed in UCP1-deficient mice, showing 638 +/- 87 ml x h(-1) x kg(-1) of DeltaVO2 thermogenesis at 1 h. In contrast, CL316,243, a selective activator of BAT thermogenesis, increased body temperature, decreased physical activity, and produced a significant rise in Vo2 in WT mice, showing 1,229 +/- 35 ml x h(-1) x kg(-1) of DeltaVO2 thermogenesis at 1 h. These changes were not observed in UCP1-deficient mice. These results, conflicting with a previously proposed idea of a role of BAT in fever, suggest a minor contribution of BAT thermogenesis to IL-1beta-induced fever. In support of this, we found no effect of IL-1beta on triglyceride content and UCP1 mRNA level in BAT, in contrast with apparent effects of CL316,243.  相似文献   

13.
Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT.  相似文献   

14.
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.  相似文献   

15.
In cold defense and fever, activity increases in sympathetic nerves supplying both tail vessels and interscapular brown adipose tissue (iBAT). These mediate cutaneous vasoconstrictor and thermogenic responses, respectively, and both depend upon neurons in the rostral medullary raphé. To examine the commonality of brain circuits driving these two outflows, sympathetic nerve activity (SNA) was recorded simultaneously from sympathetic fibers in the ventral tail artery (tail SNA) and the nerve to iBAT (iBAT SNA) in urethane-anesthetized rats. From a warm baseline, cold-defense responses were evoked by intermittently circulating cold water through a water jacket around the animal's shaved trunk. Repeated episodes of trunk skin cooling decreased core (rectal) temperature. The threshold skin temperature to activate iBAT SNA was 37.3 +/- 0.5 degrees C (n = 7), significantly lower than that to activate tail SNA (40.1 +/- 0.4 degrees C; P < 0.01, n = 7). A fall in core temperature always strongly activated tail SNA (threshold 38.3 +/- 0.2 degrees C, n = 7), but its effect on iBAT SNA was absent (2 of 7 rats) or weak (threshold 36.9 +/- 0.1 degrees C, n = 5). The relative sensitivity to core vs. skin cooling (K-ratio) was significantly greater for tail SNA than for iBAT SNA. Spectral analysis of paired recordings showed significant coherence between tail SNA and iBAT SNA only at 1.0 +/- 0.1 Hz. The coherence was due entirely to the modulation of both signals by the ventilatory cycle because it disappeared when the coherence spectrum was partialized with respect to airway pressure. These findings indicate that independent central pathways drive cutaneous vasoconstrictor and thermogenic sympathetic pathways during cold defense.  相似文献   

16.
The dorsomedial hypothalamus (DMH) and lateral/dorsolateral periaqueductal gray (PAG) are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R-) sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA). In the current study, we investigated whether excitatory amino acid (EAA) receptors in the DMH–PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p.) anesthetized rats, we observed that: (i) nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl) into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii) nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii) blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L-) PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL) into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.  相似文献   

17.
Summary To assess the thermogenic importance of BAT in Djungarian hamsters we removed about 40% of their BAT and compared their thermogenic abilities before and after the operation. BAT was weighed and assayed for its respiratory properties (Cox, mitochondria). Following removal of BAT we observed considerable reductions of NST. The comparison of NST with BAT weight and with respiratory properties of BAT following partial removal of BAT revealed that at least three different pathways for heat production were involved in NST. In cold-adapted hamsters (values for warm-adapted hamsters in parentheses) we estimated that 66.2% (37.0%) of all NST was produced by mitochondrial respiration in BAT; 16.3% (38.4%) was produced in other organ sites but required the presence of BAT, i.e. there was a mediatory action of BAT on thermogenesis in other organ sites. A further 11.5% (23%) of NST occurred outside of and independent of BAT. Mitochondrial respiration in BAT was the only compartment of NST which increased its contribution during cold adaptation (238 mW to 1,062 mW), whereas the other sources of heat remained largely unchanged.Abbreviations BAT brown adipose tissue - BATex partial removal of brown adipose tissue - BMR basal metabolic rate at thermoneutrality - Cox cytochrome c oxidase - NA noradrenaline - NST nonshivering thermogenesis  相似文献   

18.
The infralimbic region of the medial prefrontal cortex (IL) modulates autonomic and neuroendocrine function via projections to subcortical structures involved in the response to stress. We evaluated the contribution of the IL to the cardiovascular response evoked by acute stress. Under anesthesia (80 mg/kg ketamine-11.5 mg/kg xylazine), rats were implanted with telemetry probes or arterial lines for recording heart rate and blood pressure. Guide cannulas were implanted to target the IL for microinjection of muscimol (100 pmol/100 nl), N-methyl-d-aspartate (NMDA) (6 pmol/100 nl), or vehicle (100 nl). Microinjection of muscimol, an agonist of GABA(A) receptors, into the IL had no effect on stress-evoked cardiovascular and thermogenic changes in any of the paradigms evaluated (cage switch, restraint plus air-jet noise, or air-jet stress). However, microinjection of the excitatory amino acid NMDA into the IL attenuated the pressor and tachycardic response to air-jet stress. Pretreatment with the selective NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP-5, 100 pmol/100 nl) blocked the effect of NMDA on the cardiovascular response to air-jet stress. We conclude that 1) the IL region is not tonically involved in cardiovascular or thermogenic control during stress or under baseline conditions, and 2) activation of NMDA receptors in the IL can suppress the cardiovascular response to acute stress exposure.  相似文献   

19.
The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.  相似文献   

20.
The sympathetic thermoregulatory system controls the magnitude of adaptive thermogenesis in correspondence with the environmental temperature or the state of energy intake and plays a key role in determining the resultant energy storage. However, the nature of the trigger initiating this reflex arc remains to be determined. Here, using capsiate, a digestion-vulnerable capsaicin analog, we examined the involvement of specific activation of transient receptor potential (TRP) channels within the gastrointestinal tract in the thermogenic sympathetic system by measuring the efferent activity of the postganglionic sympathetic nerve innervating brown adipose tissue (BAT) in anesthetized rats. Intragastric administration of capsiate resulted in a time- and dose-dependent increase in integrated BAT sympathetic nerve activity (SNA) over 180 min, which was characterized by an emergence of sporadic high-activity phases composed of low-frequency bursts. This increase in BAT SNA was abolished by blockade of TRP channels as well as of sympathetic ganglionic transmission and was inhibited by ablation of the gastrointestinal vagus nerve. The activation of SNA was delimited to BAT and did not occur in the heart or pancreas. These results point to a neural pathway enabling the selective activation of the central network regulating the BAT SNA in response to a specific stimulation of gastrointestinal TRP channels and offer important implications for understanding the dietary-dependent regulation of energy metabolism and control of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号