共查询到20条相似文献,搜索用时 0 毫秒
1.
Oligomers with two identical peptide nucleic acid sequences joined by a flexible hairpin linker (bisPNA) can stably bind to specific DNA sequences without altering plasmid supercoiling, thus offering a unique opportunity to attach various functional entities to high molecular weight DNA. Current synthetic approaches, however, severely limit the possibility to link peptides or other chemical moieties (i.e., sugars, oligonucleotides, etc.) to bisPNA. Here we report a novel strategy for the synthesis of bisPNA-peptide conjugates in which chemoselective ligation of bisPNA to peptides was accomplished through oxime formation between an oxy-amine-containing peptide and a bisPNA-methyl ketone (complementary modifications can also be used). The described synthesis is highly efficient, does not require a protection strategy, and is carried out under mild aqueous conditions. Through this methodology long peptide sequences in either C to N or N to C polarity can be linked to bisPNA. In addition, this protocol makes the conjugation of cysteine-containing peptides feasible and allows disulfide bond formation to be controlled. This same approach can be exploited to link oligonucleotides, sugars, or other chemical entities to bisPNA. 相似文献
2.
Carriere M Vijayabaskar V Applefield D Harvey I Garneau P Lorsch J Lapidot A Pelletier J 《RNA (New York, N.Y.)》2002,8(10):1267-1279
3.
The potential of RNAs and RNA-protein (RNP) complexes as drug targets is currently being explored in various investigations. For example, a hexa-arginine derivative of neomycin (NeoR) and a tri-arginine derivative of gentamicin (R3G) were recently shown to disrupt essential RNP interactions between the trans-activator protein (Tat) and the Tat-responsive RNA (trans-activating region) in the human immunodeficiency virus (HIV) and also inhibit HIV replication in cell culture. Based on certain structural similarities, we postulated that NeoR and R3G might also be effective in disrupting RNP interactions and thereby inhibiting bacterial RNase P, an essential RNP complex involved in tRNA maturation. Our results indicate that indeed both NeoR and R3G inhibit RNase P activity from evolutionarily divergent pathogenic bacteria and do so more effectively than they inhibit partially purified human RNase P activity. 相似文献
4.
5.
J G Harrison C Frier R Laurant R Dennis K D Raney S Balasubramanian 《Bioorganic & medicinal chemistry letters》1999,9(9):1273-1278
The inhibition of human telomerase has been explored using peptide conjugated derivatives of a PNA pentamer directed at the RNA template of telomerase. It is demonstrated that the presence of cationic peptides at the N-terminus of the PNA results in enhanced inhibition of telomerase activity. Furthermore, inhibition depended on the specificity of PNA recognition. 相似文献
6.
7.
8.
Transplasma membrane electron transport from HeLa cells, measured by reduction of ferricyanide or diferric transferrin in the presence of bathophenanthroline disulfonate, is inhibited by low concentrations of adriamycin and adriamycin conjugated to diferric transferrin. Inhibition with the conjugate is observed at one-tenth the concentration required for adriamycin inhibition. The inhibitory action of the conjugate appears to be at the plasma membrane since (a) the conjugate does not transfer adriamycin to the nucleus, (b) the inhibition is observed within three minutes of addition to cells, and (c) the inhibition is observed with NADH dehydrogenase and oxidase activities of isolated plasma membranes. Cytostatic effects of the compounds on HeLa cells show the same concentration dependence as for enzyme inhibition. The adriamycin-ferric transferrin conjugate provides a more effective tool for inhibition of the plasma membrane electron transport than is given by the free drug. 相似文献
9.
We report the inhibition of the ribonucleolytic activity of ribonuclease A (RNase A) by nucleoside–dibasic acid conjugates for the first time. Agarose gel and precipitation assays show that the spacer length and the pKa of the carboxylic group have an important role in the inhibitory capacity. Kinetic experiments indicate a competitive mode of inhibition with inhibition constant (Ki) value of 132 ± 3 μM for Oxa-aT. Docking studies revealed that the carboxylic group of the most active compounds is within hydrogen bonding distance of His-12, Lys-41 and His-119. 相似文献
10.
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy. 相似文献
11.
12.
13.
Inhibition of heat shock transcription factor by GR. 总被引:8,自引:0,他引:8
S A Wadekar D Li S Periyasamy E R Sánchez 《Molecular endocrinology (Baltimore, Md.)》2001,15(8):1396-1410
14.
P J Gilmer H O McDevitt H M McConnell 《Journal of immunology (Baltimore, Md. : 1950)》1978,120(3):774-776
Conjugate formation between effector T cells raised in vivo in a BALB/c hose had fluorescein diacetate-labeled allogeneic EL4 tumor target cells was observed and scored by using a fluorescence mirroscope. This conjugate formation was found to be specifically inhibited by plasma membrane vesicles isolated from the EL4 cells. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(5):647-655
The evolutionarily conserved SWI-SNF chromatin remodeling complex regulates cellular proliferation. A catalytic subunit, BRG-1, is frequently down regulated, silenced or mutated in malignant cells, however, the mechanism by which BRG-1 may function as a tumor suppressor or block breast cancer cellular proliferation is not understood. The cyclin D1 gene is a collaborative oncogene overexpressed in greater than 50% of human breast cancers. Herein, BRG-1 inhibited DNA synthesis and cyclin D1 expression in human MCF-7 breast cancer epithelial cells. The cyclin D1 promoter AP-1 and CRE sites were required for repression by BRG-1 in promoter assays. BRG-1 deficient cells abolished and siRNA to BRG-1 reduced, formation of the BRG-1 chromatin complex. The endogenous cyclin D1 promoter AP-1 site bound BRG-1. Estradiol treatment of MCF7 cells induced recruitment of BRG-1 to the endogenous hpS2 gene promoter. Estradiol, which induced cyclin D1 abundance, was associated with a reduction in recruitment of the co-repressors HP1α/HDAC1 to the endogenous cyclin D1 promoter AP-1/BRG-1 binding sites. These studies suggest the endogenous cyclin D1 promoter BRG-1 binding site functions as a molecular scaffold in the context of local chromatin upon which coactivators and corepressors are recruited to regulate cyclin D1. 相似文献
16.
17.
Bochar DA Pan ZQ Knights R Fisher RP Shilatifard A Shiekhattar R 《The Journal of biological chemistry》1999,274(19):13162-13166
18.
19.
20.