首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretion of lung surfactant phospholipids is a highly regulated process. A variety of physiological and pharmacological agents stimulate surfactant phospholipid secretion in isolated type II cells. Although the lipid and hydrophobic protein components of surfactant are believed to be secreted together by exocytosis of lamellar body contents, regulation of surfactant protein (SP) B and SP-C secretion has not previously been examined. To address the question of whether secretion of SP-B and SP-C is stimulated by the same agonists that stimulate phospholipid secretion, we measured secretion of all four SPs under the same conditions used to measure phosphatidylcholine secretion. Freshly isolated rat type II cells were cultured overnight and exposed to known surfactant phospholipid secretagogues for 2.5 h, after which the amounts of SP-A, SP-B, SP-C, and SP-D in the medium were measured with immunoblotting. Secretion of SP-B and SP-C was stimulated three- to fivefold by terbutaline, 5'-(N-ethylcarboxyamido)adenosine, ATP, 12-O-tetradecanoylphorbol 13-acetate, and ionomycin. Similar to their effects on phospholipid secretion, the stimulatory effects of the agonists were abolished by Ro 31-8220. Secretion of SP-A and SP-D was not stimulated by the secretagogues tested. We conclude that secretion of the phospholipid and hydrophobic protein components of surfactant is similarly regulated, whereas secretion of the hydrophilic proteins is regulated differently.  相似文献   

2.
There is a developmental increase in agonist-induced surfactant secretion in type II cells. The response to the P2Y(2) agonist UTP is negligible in early newborn cells but increases with age. The response to terbutaline, N-ethylcarboxyamidoadenosine (NECA), and ATP also increases with age. As glucocorticoids are known to accelerate several aspects of lung maturation we examined the effect of dexamethasone (Dex) on the response of 1-day-old rat type II cells to surfactant secretagogues. Freshly isolated cells were cultured +/-10(-6) M Dex for 18--20 h after which phosphatidylcholine secretion was measured. Dex slightly decreased the basal secretion rate. However, it significantly increased the response to terbutaline, NECA, ATP and UTP. This effect was dependent on Dex concentration (EC(50)=2-6 x 10(-9) M) and blocked by the glucocorticoid receptor antagonist RU-486. It is unlikely to be due to increased receptor content as Dex had no effect on adenylate cyclase, phospholipase C or phospholipase D activation and the response to cAMP, forskolin and phorbol ester, secretagogues acting downstream from receptors, was also increased by Dex. These data show that Dex acts directly on the type II cell to enhance the response to surfactant secretagogues, that the effect of the hormone is mediated by the glucocorticoid receptor and suggest induction of a common downstream signaling step(s). Regulation of surfactant secretion may be an important function of glucocorticoids in the developing lung.  相似文献   

3.
To determine whether increases in the cytosolic free Ca2+ concentration ([Ca2+]i) accompany agonist-stimulated surfactant secretion by cultured alveolar type II cells, we measured the [Ca2+]i of quin2-loaded cells isolated from adult rats before and after cells were stimulated with ionomycin, terbutaline or tetradecanoylphorbol acetate (TPA). To determine whether increases in [Ca2+]i are necessary for stimulated surfactant secretion to occur, we measured secretion in cells after [Ca2+]i had been reduced by loading cells with quin2 in medium containing low [Ca2+]. Ionomycin increased [Ca2+]i and stimulated surfactant secretion in a dose-dependent manner. Reductions in [Ca2+]i correlated with reductions in secretion stimulated by ionomycin, terbutaline or TPA. Ionomycin-stimulated secretion was most sensitive to reductions in [Ca2+]i; terbutaline-stimulated secretion was more sensitive than TPA-stimulated secretion. When [Ca2+]i was less than 65 nM, all stimulated secretion was blocked. Restoration of [Ca2+]i to greater than 100 nM restored ionomycin-stimulated secretion. We conclude that ionomycin increases [Ca2+]i and stimulates surfactant secretion in cultured alveolar type II cells, and that increased [Ca2+]i appears to be necessary for ionomycin-stimulated secretion to occur. Terbutaline-stimulated surfactant secretion seems to be more easily inhibited by a reduction in [Ca2+]i than does TPA-stimulated secretion.  相似文献   

4.
Alveolar type II cells were isolated from adult rat lungs after tissue dissociation with elastase. The effect of known secretagogues on transmembrane potential was examined in freshly isolated cells (day 0 cells) and in cells after one day of primary culture (day 1 cells). Freshly isolated type II cells were incubated with 3,3'-dipentyloxacarbocyanine (di-O-C5(3)) or 3,3'-dipropylthiadicarbocyanine (di-S-C3(5)), dyes whose intracellular fluorescence intensity is a direct function of the cellular transmembrane potential. Fluorescence was continuously recorded by fluorescence spectrophotometry. Type II cells rapidly incorporated the dyes, and the addition of gramicidin (1 microgram/ml) depolarized the cells as indicated by a change in fluorescence. Neither 12-O-tetradecanoylphorbol 13-acetate (TPA) nor terbutaline plus 3-isobutyl-1-methylxanthine (IBMX), which stimulate surfactant secretion from isolated alveolar type II cells, changed the transmembrane potential. The lipophilic cation triphenylmethylphosphonium (TPMP+) was used to quantitate the transmembrane potential of type II cells cultured for one day. Addition of TPA or terbutaline plus IBMX induced surfactant secretion but did not alter the transmembrane potential. To study further the relationship of secretion to the transmembrane potential, secretion was also determined in the presence of high extracellular potassium which depolarizes the cells and in the presence of choline in place of sodium. High potassium enhanced the basal secretion of phosphatidylcholine from 1.8% to 3.4% (P less than 0.01, n = 7). Substitution of sodium chloride by choline chloride had no effect on basal secretion but enhanced TPA-induced secretion (P less than 0.01). We conclude that high extracellular potassium induces membrane depolarization and stimulates surfactant secretion, but TPA or terbutaline plus IBMX stimulates secretion without detectable membrane depolarization and stimulation of secretion by TPA does not require extracellular sodium.  相似文献   

5.
The purpose of this study is to clarify the involvement of protein kinase C in pulmonary surfactant secretion from adult rat alveolar type II cells in primary culture. Surfactant secretion in vitro is stimulated by at least two classes of compounds. One class, (e.g. terbutaline) increases intracellular cyclic AMP, whereas the other class (e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA] does not. TPA has been shown to activate protein kinase C in other cell systems. In our studies, 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is a direct activator of protein kinase C, stimulated [3H] phosphatidylcholine secretion by alveolar type II cells in a dose- and time-dependent manner. Tetracaine, which is an inhibitor of protein kinase C, inhibited the TPA-induced secretion of [3H]phosphatidylcholine from alveolar type II cells in a dose-dependent manner. However, tetracaine had no effect on terbutaline-induced secretion. The effects of terbutaline and OAG upon surfactant secretion were significantly more than additive, but those of TPA and OAG were less than additive. The specific activity of protein kinase C was 6-fold higher than cyclic AMP-dependent protein kinase found in type II cells when both kinases were assayed using lysine-rich histone as a common phosphate acceptor. Ninety-four per cent of protein kinase C activity was recovered in the cytosolic fraction of unstimulated type II cells, and 40% of activity in cytosolic fraction was translocated to particulate fraction upon treatment with TPA. As observed in other tissues, protein kinase C of alveolar type II cells was highly activated by 1,2-dioleoyl-sn-glycerol or TPA in the presence of Ca2+ and phosphatidylserine. These results suggest that pulmonary surfactant secretion in vitro is stimulated by both protein kinase C and cyclic AMP-dependent protein kinase.  相似文献   

6.
To determine potential relationships between transforming growth factor (TGF)-alpha and surfactant homeostasis, the metabolism, function, and composition of surfactant phospholipid and proteins were assessed in transgenic mice in which TGF-alpha was expressed in respiratory epithelial cells. Secretion of saturated phosphatidylcholine was decreased 40-60% by expression of TGF-alpha. Although SP-A, SP-B, and SP-C mRNA levels were unchanged by expression of TGF-alpha, SP-A and SP-B content in bronchoalveolar lavage fluid was decreased. The minimum surface tension of surfactant isolated from the transgenic mice was significantly increased. Incubation of cultured normal mice type II cells with TGF-alpha in vitro did not change secretion of surfactant phosphatidylcholine and SP-B, indicating that TGF-alpha does not directly influence surfactant secretion. Expression of a dominant negative (mutant) EGF receptor in the respiratory epithelium blocked the TGF-alpha-induced changes in lung morphology and surfactant secretion, indicating that EGF receptor signaling in distal epithelial cells was required for TGF-alpha effects on surfactant homeostasis. Because many epithelial cells were embedded in fibrotic lesions caused by TGF-alpha, changes in surfactant homeostasis may at least in part be influenced by tissue remodeling that results in decreased surfactant secretion. The number of nonembedded type II cells was decreased 30% when TGF-alpha was expressed during development and was increased threefold by TGF-alpha expression in adulthood, suggesting possible alteration of type II cells on surfactant metabolism in the adult lung. Abnormalities in surfactant function and decreased surfactant level in the airways may contribute to the pathophysiology induced by TGF-alpha in both the developing and adult lung.  相似文献   

7.
8.
Proteolytic processing of surfactant protein C (SP-C) proprotein in multivesicular bodies of alveolar type II cells results in a 35-residue mature peptide, consisting of a transmembrane domain and a 10-residue extramembrane domain. SP-C mature peptide is stored in lamellar bodies (a lysosomal-like organelle) and secreted with surfactant phospholipids into the alveolar space. This study was designed to identify the peptide domain of SP-C required for sorting and secretion of this integral membrane peptide. Deletion analyses in transiently transfected PC12 cells and isolated mouse type II cells suggested the extramembrane domain of mature SP-C was cytosolic and sufficient for sorting to the regulated secretory pathway. Intratracheal injection of adenovirus encoding SP-C mature peptide resulted in secretion into the alveolar space of wild type mice but not SP-C (-/-) mice. SP-C secretion in null mice was restored by the addition of the N-terminal propeptide. The cytosolic domain, consisting of the N- terminal propeptide and extramembrane domain of mature SP-C peptide, supported secretion of the transmembrane domain of platelet-derived growth factor receptor. Collectively, these studies indicate that the N-terminal propeptide of SP-C is required for intracellular sorting and secretion of SP-C.  相似文献   

9.
Substance P, an eleven amino acid neuropeptide, significantly inhibited release of [3H]phosphatidylcholine from pulmonary Type II epithelial cells in vitro. Basal release and release in response to the beta-adrenergic agonist, terbutaline and 12-O-tetradecanoylphorbol 13-acetate (TPA) were significantly decreased in the presence of substance P. Inhibitory effects of substance P were noted following a 1 h exposure of primary cultures of Type II cells in vitro and persisted up to 3 h in the presence of the secretagogues, TPA and terbutaline. The IC50 values for substance P inhibition of [3H]PC release were 10 microM for basal release, 40 microM for TPA-induced release and 50 microM for terbutaline-induced release. The related neuropeptide, physalaemin and the stable active analog of substance P, [pGlu5, MePhe8, MeGly9]substance P [5-11], had no significant inhibitory effects on surfactant release whether in the presence or absence of TPA or terbutaline. These data support the hypothesis that NH2-terminal basic groups of substance P are necessary for inhibition of surfactant secretion from isolated Type II cells and support the concept that an inhibitory system contributes to mediation of surfactant secretion from Type II epithelial cells.  相似文献   

10.
We used the pH-sensitive fluorescent probe 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) to identify Na+/H+ exchange in freshly isolated rat alveolar type II cells and alveolar type II cells in primary culture. The intracellular pH (pHi) of freshly isolated alveolar type II cells was 7.36 +/- 0.05 (n = 3). When freshly isolated alveolar type II cells were acid loaded with nigericin in sodium-free buffer, the pHi dropped to 6.59 +/- 0.04 and remained low in sodium-free buffer. When acid-loaded cells were subsequently incubated with NaCl, pHi increased in a dose-dependent manner. Amiloride (0.1 mM) inhibited the sodium-induced increase in pHi. When the acid-loaded cells were resuspended in an unbuffered choline chloride solution, the cells secreted H+ in a sodium-dependent and amiloride-inhibitable manner. Alveolar type II cell monolayers, which were cultured for 22 h on glass coverslips and then loaded with BCECF, had a resting pHi of 7.48 +/- 0.05 (n = 4). Nigericin acidified these cultured cells in the absence of sodium and NaCl increased the pHi of these acid loaded cells as observed in freshly isolated cells. Secretagogues of pulmonary surfactant, 12-O-tetradecanoylphorbol 13-acetate (TPA) and terbutaline, did not change pHi. Inhibition of the Na+/H+ antiporter by the addition of amiloride to a Na+ containing medium or the substitution of choline for Na+ did not inhibit stimulated phosphatidylcholine secretion. We conclude that pHi regulation in rat alveolar type II cells is in part mediated by an amiloride-sensitive Na+/H+ antiporter, but this system appears not to be involved in TPA- or terbutaline-induced pulmonary surfactant secretion in primary culture.  相似文献   

11.
Surfactant sufficiency is dependent upon adequate synthesis and secretion of surfactant by the type II alveolar epithelium. Our laboratory has previously shown that basal secretion of surfactant phospholipid by differentiated fetal type II cells is lower than the basal secretion by adult cells. The purposes of this study were to determine if undifferentiated fetal type II cells can secrete phosphatidylcholine, to determine if terbutaline, a β-adrenergic agonist, stimulates secretion of surfactant phospholipids by undifferentiated fetal cells and to examine the effects of differentiation on secretion of surfactant phospholipids by fetal cells. Constitutive (basal) secretion of phosphatidylcholine increased linearly as a function of time in both undifferentiated and differentiated cells, but the rate of secretion was greater in differentiated cells than the rate of secretion in undifferentiated cells. Terbutaline caused a concentration-dependent increase in secretion in both undifferentiated and differentiated cells. Maximal effective concentration and EC50 were similar for undifferentiated (10−6 M, 0.2 μM) and differentiated (10−5 M, 0.3 μM) cells. The relative stimulation of secretion above control values was greater for undifferentiated cells. The kinetics of terbutaline stimulation varied significantly with cellular differentiation. Terbutaline resulted in 230% stimulation of secretion in undifferentiated cells at 30 min followed by a decline in the response to terbutaline at 60 to 120 min. In contrast, terbutaline stimulated secretion by differentiated cells showed a sustained linear increase from 0 to 120 min. This regulation of stimulated secretion is not present in undifferentiated cells. We conclude that undifferentiated type II cells are capable of the secretion of phosphatidylcholine and that terbutaline stimulates secretion by undifferentiated cells. Furthermore, basal secretion increases as a function of differentiation of type II cells and the regulation of stimulated secretion seen in differentiated cells is not developed in undifferentiated cells. The developmental regulation of the secretion of surfactant is complex and probably involves both excitatory as well as inhibitory mechanisms which develop at different stages of differentiation of the type II cell.  相似文献   

12.
We examined the effect of purinoceptor agonists on phosphatidylcholine secretion in primary cultures of type II pneumocytes from adult rats. Surfactant is a major product of the type II cell and phosphatidylcholine is its principal component. Adenosine, AMP, ADP and ATP stimulated phosphatidylcholine secretion in a concentration-dependent manner. At the optimum concentration (1 mM), adenosine and AMP stimulated phosphatidylcholine secretion more than 2-fold, while ATP stimulated 5-fold and ADP almost 7-fold. Because of the magnitude of the response it is tempting to speculate that secretion of surfactant may be under purinoceptor regulation. None of these agents influenced cellular phosphatidylcholine synthesis or lactate dehydrogenase release into the medium, so the effects were primarily on secretion and were not secondary to effects on synthesis or cell damage. Non-metabolizable analogs of adenosine, 5'-N-ethyl-carboxyamidoadensoine (NECA) and L-N6-phenylisopropyladenosine (L-PIA), stimulated secretion to the same extent as adenosine and the effect of NECA was antagonized by 8-phenyltheophylline, suggesting a P1 purinoceptor-mediated mechanism. The stimulatory effect of ATP was diminished by alpha, beta-methylene ATP but only slightly by 8-phenyltheophylline, suggesting that, although part of the ATP effect could be explained by catabolism to adenosine, the P2 purinoceptor may also be involved in regulation of surfactant secretion.  相似文献   

13.
Pulmonary surfactant is secreted by the type II alveolar cells of the lung, and this secretion is induced by secretagogues of several types (e.g., ionomycin, phorbol esters, and terbutaline). Secretagogue-induced secretion is inhibited by surfactant-associated protein A (SP-A), which binds to a specific receptor (SPAR) on the surface of type II cells. The mechanism of SP-A-activated SPAR signaling is completely unknown. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued surfactant secretion from inhibition by SP-A. In order to directly demonstrate a role for PI3K in SPAR signaling, PI3K activity was immunoprecipitated from type II cell extracts. PI3K activity increased rapidly after SP-A addition to type II cells. Since many receptors that activate PI3K do so through tyrosine-specific protein phosphorylation, antisera to phosphotyrosine, insulin-receptor substrate-1 (IRS-1), or SPAR were also examined. These antisera coimmunoprecipitated PI3K activity that was stimulated by SP-A. In addition, the tyrosine-specific protein kinase inhibitors genistein and herbimycin A blocked the action of SP-A on surfactant secretion. We conclude that SP-A signals to regulate surfactant secretion through SPAR, via pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of PI3K. This activation leads to inhibition of secretagogue-induced secretion of pulmonary surfactant.  相似文献   

14.
In the isolated perfused rat lung and cultured type II cells, surfactant secretion and cellular adenosine 3',5'-cyclic monophosphate (cAMP) content was stimulated by beta-adrenergic agonists. Isoproterenol-induced surfactant secretion was inhibited by the antimicrotubule agents colchicine and vinblastine. Incorporation of [3H]glycerol into disaturated phosphatidylcholine was augmented by beta-adrenergic agents but was not significantly different from the enhanced incorporation rate when colchicine was present. This suggests that the augmented incorporation of [3H]glycerol into disaturated phosphatidylcholine was a secondary response to storage depletion rather than direct cAMP stimulation. beta-Adrenergic agents shifted the equilibrium in the isolated perfused rat lung and cultured type II cells to favor microtubules. The stimulatory effect of 1.0 microM isoproterenol on tubulin polymerization was observed as early as 1 min and was augmented 2.8-fold at a half-maximal stimulation of 4 nM in cultured type II cells. Cytochalasin B, an antimicrofilament agent, potentiated the isoproterenol-induced secretion. These results suggest that an intact microtubule-microfilament system may be obligatory for enhanced surfactant secretion and that beta-adrenergic agents not only induce surfactant release but also tubulin polymerization.  相似文献   

15.
The interaction between beta-adrenergic signaling and the activation of protein kinase C in alveolar type II cell plays an important role in the regulation of surfactant secretion because the combined application of beta-adrenergic agonist with protein kinase C activator to the cells stimulates the secretion synergistically. However, the mechanisms underlying the interaction are not clear. In the present study, we examined the combined effect of terbutaline with phorbol 12-myristate 13-acetate (PMA) on cytoplasmic free Ca2+ concentration ([Ca2+]i) in rat alveolar type II cells. The combined application of terbutaline with PMA to the cells rapidly increased [Ca2+]i, although neither of them affected it by itself. Similar increases of [Ca2+]i were observed in other combinations, such as terbutaline with 1-oleoyl-2-acetyl-sn-glycerol, and forskolin with PMA. Either the removal of extracellular Ca2+ or the addition of Co2+ remarkably suppressed the increase of [Ca2+]i induced by the combination of terbutaline with PMA. In addition, Co2+ inhibited the phosphatidylcholine secretion induced by the combination of terbutaline and PMA. These results suggested that the [Ca2+]i increased as a result of the interaction between formation of cyclic AMP and activation of protein kinase C in alveolar type II cells, and that the increase in [Ca2+]i was mediated by the Ca2+ influx through the plasma membrane. This mechanism to modulate [Ca2+]i may play a role in the regulation of surfactant secretion by alveolar type II cells.  相似文献   

16.
Incubation of isolated rat alveolar epithelial type II cells with secretagogues (calcium ionophore, ATP or terbutaline) resulted in rapid proteolysis of lung spectrin and appearance of multiple proteolytic products which showed immunoreactivity with an antibody against human erythrocyte spectrin. These proteolytic products were similar to those generated from erythrocyte spectrin or cultured lung tumor cells (A549 cells) incubated with purified calpain. Furthermore, incubation of alveolar type II cells with a calpain-specific inhibitor modulated the secretagogue-induced proteolysis of lung spectrin. Thus, stimulation of secretion appeared to activate endogenous calpain in type II cells, suggesting that calpain-mediated proteolysis of a submembranous cytoskeletal protein could play an important role in the secretory process.  相似文献   

17.
Pulmonary surfactant lowers surface tension in the lung. Its deficiency leads to the severe physiologic abnormalities seen in the respiratory distress syndrome. The hydrophobic surfactant proteins, SP-B and SP-C, appear to be especially important in the surface-spreading characteristics of pulmonary surfactant. We report the nucleotide sequence of cDNA clones for rat SP-C and compare the deduced amino acid sequence for SP-C from several species. A highly conserved domain exists within the confines of mature human SP-C. An Eisenberg plot of this region predicts a membrane-associated helix. We also demonstrate by Northern analysis the tissue-specific expression of SP-C. A comparison of signal strength between total lung RNA and RNA derived from isolated type II cells supports the idea that most SP-C messenger RNA in total lung can be accounted for by that present in alveolar type II cells.  相似文献   

18.
19.
Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号