首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Occupational stress and stress-related performance impairment is a common feature among hospital nurses engaged in rotating shift work, particularly night work. This cross-sectional survey determined workplace stress and cognitive efficiency of nursing staff engaged in rotating shift work. One hundred twenty-two full-time staff nurses in three different government hospitals in West Bengal, India, were the participants. Perceived exertion, alertness, sleep duration and various performance tests were performed. Sleep duration was least between repeated night shifts in comparison with the other shifts. Though alertness and performance of the staff nurses varied on different shifts, the late portion of the night shift as well as the early portion of the morning shift was most prone to impairment of work efficiency.  相似文献   

2.
《Chronobiology international》2013,30(10):1152-1159
Shift work have been thought to restrict participation in leisure time activities, but the knowledge about physical activity in rotating night shift nurses has been limited so far. We investigated the associations between the rotating night shift work and physical activity using data from a cross-sectional study among nurses and midwives. This study included 354 nurses and midwives (aged 40–60) currently working rotating night shifts and 371 ones working days only. The information on the work characteristics and potential covariates was collected via a personal interview. Weight and height were measured and BMI was calculated. Physical activity was assessed according to the international questionnaire on physical activity – IPAQ, and four domains: leisure time, occupational, transport related and household were analyzed. Women who reported none leisure time activity were defined as recreationally “inactive”. The associations were examined with multiple linear or logistic regression models adjusted for age, season of the year, number of full term births, marital status and BMI. Total and occupational physical activity was significantly higher among nurses working rotating night shifts. However, leisure time activity was significantly affected among rotating night shift nurses and midwives, compared to women working during the days only, with increased odds ratio for recreational “inactivity” (OR?=?1.57, 95% CI: 1.11–2.20). Rotating night shift work among nurses and midwives is associated with higher occupational physical activity but lower leisure time activity. Initiatives supporting exercising among night shift workers are recommended.  相似文献   

3.
Few studies have reported on the effects of fixed and rotating shift systems on the prevalence of sleep disturbance. Thus, in this study, the relationships between different work schedules and sleep disturbance in Chinese workers were investigated. A total of 2180 workers aged 19–65 years responded to the self-report questionnaire on shift work schedule (fixed day-shift, fixed night-shift, two-shift or three-shift system), working hours a day, and working days a week, physical effort, subjective sleep quality and subjective mental state. It was found that the rotating shift workers, namely, two- and three-shift workers, exhibited higher risks of sleep disturbance than with the fixed day-shift workers did (OR 1.37; 95% CI 1.07to 1.74; and OR 2.19; 95% CI 1.52 to 3.15, respectively). The risk was particularly high among two- or three-shift workers who worked more than 8 hours a day or more than 5 days a week and among three-shift workers who reported both light and heavy physical effort at work. Moreover, the two- and three-shift workers (rotating shift workers) suffered from poorer sleep quality than the fixed night shift workers did (OR 1.84; 95% CI 1.01 to 3.32; and OR 2.94; 95% CI 1.53 to 5.64, respectively). Consequently, rotating shift work (two- and three-shift work) is a risk factor for sleep disturbance, and the fixed work rhythm may contribute to the quality of sleep.  相似文献   

4.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

5.
Recently, attention has focused in Israel on the possible legal and health consequences of shift work. We decided to study sleep disorders among female nursing personnel working a shift schedule, in comparison with day nurses, in a large metropolitan general hospital. The study population was composed of 131 female certified nurses working shifts and 44 working days only. Inclusion criteria for the survey was at least 1 year of shift work alternating between day, evening, and night shifts, or at least 1 year of day work. All participants completed a self-report sleep questionnaire encompassing (a) demographic data, (b) sleep survey, and (c) employment details. Statistical analysis was performed using the Pearson correlation test and analysis of variance multiple range test (according to Scheffe's procedure). No significant correlation was found between sleep disorders and age of subjects. No sleep disorders were reported by 19.8% of shift workers versus 76.5% of day workers. Statistically significant findings were that the number of shifts per week >4.1 (p = 0.001) and duration of shift work >13.6 years (p = 0.007) correlated with the presence of sleep disorders. An additional significant finding (p = 0.014) was the impact of evening shifts on sleep disorders. The present small study confined to women supports the growing body of data on sleep complaints among shift workers.  相似文献   

6.
Satisfactory work ability is sustained and promoted by good physical and mental health and by favorable working conditions. This study examined whether favorable and rewarding work-related factors increased the work ability among European nurses. The study sample was drawn from the Nurses' Early Exit Study and consisted of 7,516 nursing staff from seven European countries working in state-owned and private hospitals. In all, 10.8% were day, 4.2% were permanent night, 20.9% were shift without night shift, and 64.1% were shift workers with night shifts. Participants were administered a composite questionnaire at baseline (Time 0) and 1 yr later (Time 1). The Work Ability Index (WAI) at Time 1 was used as the outcome measure, while work schedule, sleep, rewards (esteem and career), satisfaction with pay, work involvement and motivation, and satisfaction with working hours at Time 0 were included as potential determinants of work ability. Univariate and multivariate analyses were conducted after adjusting for a number of confounders (i.e., country, age, sex, type of employment, family status, and other job opportunities in the same area). Work schedule was not related to Time 1 changes in WAI. Higher sleep quality and quantity and more favorable psychosocial factors significantly increased work ability levels. Higher sleep quality and quantity did not mediate the effect of work schedule on work ability. No relevant interaction effects on work ability were observed between work schedule and the other factors considered at Time 0. As a whole, sleep and satisfaction with working time were gradually reduced from day work to permanent night work. However, scores on work involvement, motivation, and satisfaction with pay and rewards were the highest in permanent night workers and the lowest in rotating shift workers that included night shifts.  相似文献   

7.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score >?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.  相似文献   

8.
Satisfactory work ability is sustained and promoted by good physical and mental health and by favorable working conditions. This study examined whether favorable and rewarding work‐related factors increased the work ability among European nurses. The study sample was drawn from the Nurses' Early Exit Study and consisted of 7,516 nursing staff from seven European countries working in state‐owned and private hospitals. In all, 10.8% were day, 4.2% were permanent night, 20.9% were shift without night shift, and 64.1% were shift workers with night shifts. Participants were administered a composite questionnaire at baseline (Time 0) and 1 yr later (Time 1). The Work Ability Index (WAI) at Time 1 was used as the outcome measure, while work schedule, sleep, rewards (esteem and career), satisfaction with pay, work involvement and motivation, and satisfaction with working hours at Time 0 were included as potential determinants of work ability. Univariate and multivariate analyses were conducted after adjusting for a number of confounders (i.e., country, age, sex, type of employment, family status, and other job opportunities in the same area). Work schedule was not related to Time 1 changes in WAI. Higher sleep quality and quantity and more favorable psychosocial factors significantly increased work ability levels. Higher sleep quality and quantity did not mediate the effect of work schedule on work ability. No relevant interaction effects on work ability were observed between work schedule and the other factors considered at Time 0. As a whole, sleep and satisfaction with working time were gradually reduced from day work to permanent night work. However, scores on work involvement, motivation, and satisfaction with pay and rewards were the highest in permanent night workers and the lowest in rotating shift workers that included night shifts.  相似文献   

9.
The "Bergen Shift Work Sleep Questionnaire" (BSWSQ) was developed to systematically assess discrete sleep problems related to different work shifts (day, evening, night shifts) and rest days. In this study, we assessed the psychometric properties of the BSWSQ using a sample of 760 nurses, all working in a three-shift rotation schedule: day, evening, and night shifts. BSWSQ measures insomnia symptoms using seven questions: >30-min sleep onset latency, >30-min wake after sleep onset, >30-min premature awakenings, nonrestorative sleep, being tired/sleepy at work, during free time on work days, and when not working/on vacation. Symptoms are assessed separately for each work shift and rest days, as "never," "rarely," "sometimes," "often," "always," or "not applicable." We investigated the BSWSQ model fit, reliability (test-retest of a subsample, n = 234), and convergent and discriminant validity between the BSWSQ and Epworth Sleepiness Scale, Fatigue Questionnaire, and Hospital Anxiety Depression Scale. We also investigated differences in mean scores between the different insomnia symptoms with respect to different work shifts and rest days. BSWSQ demonstrated an adequate model fit using structural equation modeling: root mean square error of approximation =?.071 (90% confidence interval [CI]?=?.066-.076), comparative fit index =?.91, and chi-square/degrees of freedom = 4.41. The BSWSQ demonstrated good reliability (test-retest coefficients p < .001). We found good convergent and discriminant validity between BSWSQ and the other scales (all coefficients p < .001). There were significant differences between the overall/composite scores of the various work shifts. Night shift showed the highest score compared to day and evening shifts as well as to rest days (all post hoc comparisons p < .001). Mean scores of different symptoms also varied significantly within the individual work shifts. We conclude that the BSWSQ meets the necessary psychometric standards, enabling systematic study of discrete insomnia symptoms in different work shifts.  相似文献   

10.
Nursing personnel in Brazil are usually submitted to fixed 12 h shifts with no consecutive working days or nights. Moonlighting is common in this group, with a consequent increase in the number of working hours. The possibility of sleeping on the job during the night shift in the studied hospitals had already been described. The present study aims to analyze whether the time devoted to daily activities (sleep, rest, leisure, housework, commuting, personal needs, care of children or other people, non‐paid work, and study) is related to the number of worked hours and to nap‐taking during the night shift. The field study took place at two public hospitals in Rio de Janeiro, Brazil. Workers filled out a structured form on time devoted to the above‐mentioned activities for at least four consecutive days. The time devoted to sleep was analyzed according to its occurrence at home or on the job. Workers were classified according to the number of jobs (one job/two jobs) and the time dedicated to work according to the median of the whole series (below the median/above the median). All workers who had at least one working night were analyzed as to nap‐taking on the job. They were classified according to the sleep occurrence during the night shift—the sleep group and the non‐sleep group, both of which were compared to daytime workers. Statistical treatment of data included non‐parametrical procedures. The study group comprised 144 workers (mean age: 35.7±10.5 years old; 91% women; 78% nurse assistants, the remainder registered nurses). They recorded their daily activities for 4–11 days; 829 cumulative days were analyzed for the whole group. A total of 165 working nights were analyzed; sleep or rest occurred during 112 (68%) of them, with mean sleep/rest duration of 141±86 min. Time devoted to sleep and leisure varied according to the number of working hours, being significantly reduced in those submitted to longer work hours (p<0.001 and p=0.002, respectively). Results close to significance point to a reduction in the time dedicated to housework among workers with long work hours (p=0.053). The time spent on sleep/rest per working night did not differ according to the number of worked hours (p=0.490). A tendency was observed for those who have two jobs to devote more time to sleep/rest on the job (p=0.058). The time of personal needs was significantly lower among those who did not sleep on the job as compared to day workers (p=0.036). The total sleep time was significantly lower among those who did not sleep on the job, as compared to day workers and to those who slept on the job (p=0.004 and p=0.05, respectively). As to home sleep length, workers who slept and those who did not sleep on the job were similar and slept significantly less than exclusively daytime workers (p<0.001 and p=0.002, respectively). Sleeping on the job during the night shift seems to partially compensate for the shorter sleep at home among night workers and may play a beneficial effect in coping with two jobs.  相似文献   

11.
Job stress, social support at work, and insomnia in Japanese shift workers   总被引:2,自引:0,他引:2  
A cross-sectional study was conducted to clarify the contribution of psychological job stress to insomnia in shift workers. A self-administered questionnaire concerning job stress, sleep, depressive symptoms and lifestyle factors was submitted to a sample of 530 rotating shift workers of age 18-59 years (mean age 27) in an electric equipment manufacturing company. Perceived job stress, i.e., job demands, job control and social support at work, was assessed using the Japanese version of the Job Content Questionnaire. Insomnia was regarded as prevalent if the workers had at least one of the following symptoms in the last year; less than 30 minutes to fall asleep, difficulty in maintaining sleep, or early morning awakening almost everyday. Overall prevalence was 37.8%. Logistic regression analyses while adjusting relevant factors showed that lower social support at work was significantly associated with a greater risk of insomnia than the higher social support (adjusted OR 2.5). Higher job strain with lower social support at work increased the risk, compared to lower strain with higher support at work (crude OR 1.8; adjusted OR 1.5). Our findings suggest the low social support at work independently associated with insomnia in shift workers.  相似文献   

12.
《Chronobiology international》2013,30(10):1169-1178
We compared two “3?×?8” shift rotas with backward rotation and quick return (morning and night shift in the same day) in a 5- or 6-day shift cycle, and a “2?×?12” shift rota with forward rotation in a 5-d shift cycle. A total of 294 nurses (72.6% women, mean age 33.8) were examined in a survey on work-related stress, including the Standard Shiftwork Index. Ten nurses per each shift roster recorded their activity and rest periods by actigraphy, rated sleepiness and sleep quality, and collected salivary cortisol throughout the whole shift cycle. Nurses engaged in the “2?×?12” rota showed lower levels of sleep disturbances and, according to actigraphy, sleep duration was more balanced and less fragmented than in the “3?×?8” rosters. The counter-clockwise shift rotation and quick return of “3?×?8” schedules reduce possibility of sleep and recovery. The insertion of a morning shift before the day with quick return increases night sleep by about 1?h. Nurses who take a nap during the night shift require 40% less sleep in the morning after. The “2?×?12” clockwise roster, in spite of 50% increased length of shift, allows a better recovery and more satisfying leisure times, thanks to longer intervals between work periods. Sleepiness increased more during the night than day shifts in all rosters, but without significant difference between 8-h and 12-h rosters. However, the significantly higher level at the start of the night shift in the “3?×?8” rotas points out that the fast backward rotation with quick return puts the subjects in less efficient operational conditions. Some personal characteristics, such as morningness, lability to overcome drowsiness, flexibility of sleeping habits and age were significantly associated to sleep disturbances in nurses engaged in the “3?×?8” rotas, but not in the “2?×?12” schedule.  相似文献   

13.
The objective of this study was to examine the association of age with chronotype and sleep duration in day workers and rotating shift workers, including night shift work. Between October 2012 and February 2015, a cross-sectional study was conducted in a German chemical company. Using the “Munich ChronoType Questionnaire” (MCTQ), data about sleep onset and sleep offset during workdays and work-free days were retrieved and the chronotype was computed during regular voluntary occupational health check-ups. Associations between age and chronotype, as well as sleep duration, were assessed using linear regression analyses. Potential effect modification by the working time system was examined. Within the study period, 4,040 employees (82.3% and 17.7% were engaged in day work and rotating shift work, respectively) completed the questionnaire. Study participants were on average 41.8 years old (Min = 18.0, Max = 65.0, SD = 10.2) and predominantly male (75.4%). Mean chronotype and overall sleep duration was 03:22 (SD = 54 min) and 7.2 h (SD = 1.0 h) respectively. Older age was associated with earlier chronotype and reduced overall sleep duration in both day workers and rotating shift workers (p < 0.001 for all models). Compared to day workers, employees whom engaged in rotating shift work were later chronotypes and had overall a longer sleep duration. With older age, the difference between day and rotating shift workers regarding chronotype increased, while the difference regarding overall sleep duration decreased (pinteraction<0.005 for both models). This finding could indicate that both changes in circadian physiology and exposure to certain work schedules contribute to the age-related changes. Older rotating shift workers, with early chronotypes may have issues with night shifts, while day work and morning shifts may be best compatible to earlier chronotypes. Differences in sleep timing across age groups, might indicate that the same work hours will affect shift workers differently, dependent on their age, suggesting that more flexible and chronotype-adapted work hours could provide useful; especially for older employees. Sleep education in the form of courses and health campaigns could be a way to raise awareness of the importance of a healthy sleep pattern. This could be achieved by learning strategies to better adjust individual sleep patterns to work hours.  相似文献   

14.
Nursing personnel in Brazil are usually submitted to fixed 12 h shifts with no consecutive working days or nights. Moonlighting is common in this group, with a consequent increase in the number of working hours. The possibility of sleeping on the job during the night shift in the studied hospitals had already been described. The present study aims to analyze whether the time devoted to daily activities (sleep, rest, leisure, housework, commuting, personal needs, care of children or other people, non-paid work, and study) is related to the number of worked hours and to nap-taking during the night shift. The field study took place at two public hospitals in Rio de Janeiro, Brazil. Workers filled out a structured form on time devoted to the above-mentioned activities for at least four consecutive days. The time devoted to sleep was analyzed according to its occurrence at home or on the job. Workers were classified according to the number of jobs (one job/two jobs) and the time dedicated to work according to the median of the whole series (below the median/above the median). All workers who had at least one working night were analyzed as to nap-taking on the job. They were classified according to the sleep occurrence during the night shift-the sleep group and the non-sleep group, both of which were compared to daytime workers. Statistical treatment of data included non-parametrical procedures. The study group comprised 144 workers (mean age: 35.7+/-10.5 years old; 91% women; 78% nurse assistants, the remainder registered nurses). They recorded their daily activities for 4-11 days; 829 cumulative days were analyzed for the whole group. A total of 165 working nights were analyzed; sleep or rest occurred during 112 (68%) of them, with mean sleep/rest duration of 141+/-86 min. Time devoted to sleep and leisure varied according to the number of working hours, being significantly reduced in those submitted to longer work hours (p < 0.001 and p = 0.002, respectively). Results close to significance point to a reduction in the time dedicated to housework among workers with long work hours (p = 0.053). The time spent on sleep/rest per working night did not differ according to the number of worked hours (p = 0.490). A tendency was observed for those who have two jobs to devote more time to sleep/rest on the job (p = 0.058). The time of personal needs was significantly lower among those who did not sleep on the job as compared to day workers (p = 0.036). The total sleep time was significantly lower among those who did not sleep on the job, as compared to day workers and to those who slept on the job (p = 0.004 and p = 0.05, respectively). As to home sleep length, workers who slept and those who did not sleep on the job were similar and slept significantly less than exclusively daytime workers (p < 0.001 and p = 0.002, respectively). Sleeping on the job during the night shift seems to partially compensate for the shorter sleep at home among night workers and may play a beneficial effect in coping with two jobs.  相似文献   

15.
The “Bergen Shift Work Sleep Questionnaire” (BSWSQ) was developed to systematically assess discrete sleep problems related to different work shifts (day, evening, night shifts) and rest days. In this study, we assessed the psychometric properties of the BSWSQ using a sample of 760 nurses, all working in a three-shift rotation schedule: day, evening, and night shifts. BSWSQ measures insomnia symptoms using seven questions: >30-min sleep onset latency, >30-min wake after sleep onset, >30-min premature awakenings, nonrestorative sleep, being tired/sleepy at work, during free time on work days, and when not working/on vacation. Symptoms are assessed separately for each work shift and rest days, as “never,” “rarely,” “sometimes,” “often,” “always,” or “not applicable.” We investigated the BSWSQ model fit, reliability (test-retest of a subsample, n?=?234), and convergent and discriminant validity between the BSWSQ and Epworth Sleepiness Scale, Fatigue Questionnaire, and Hospital Anxiety Depression Scale. We also investigated differences in mean scores between the different insomnia symptoms with respect to different work shifts and rest days. BSWSQ demonstrated an adequate model fit using structural equation modeling: root mean square error of approximation?=?.071 (90% confidence interval [CI]?=?.066–.076), comparative fit index?=?.91, and chi-square/degrees of freedom?=?4.41. The BSWSQ demonstrated good reliability (test-retest coefficients p?<?.001). We found good convergent and discriminant validity between BSWSQ and the other scales (all coefficients p?<?.001). There were significant differences between the overall/composite scores of the various work shifts. Night shift showed the highest score compared to day and evening shifts as well as to rest days (all post hoc comparisons p?<?.001). Mean scores of different symptoms also varied significantly within the individual work shifts. We conclude that the BSWSQ meets the necessary psychometric standards, enabling systematic study of discrete insomnia symptoms in different work shifts. (Author correspondence: )  相似文献   

16.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1–9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score ?>?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses. (Author correspondence: )  相似文献   

17.
This cross-sectional exploratory study involved health care workers of various skill types and levels. We tested the hypothesis that the prevalence of diseases, sleep complaints, and insufficient time for nonprofessional activities (family, leisure, and rest) are higher among night than day workers. Data collection was carried out in two public hospitals using questionnaires and other forms. Night work was explored as a risk factor, considering a night worker as one who had at least one night job on the occasion of the research. Data were assessed by a univariate analysis. The association between work schedule and the dependent variables—health conditions, sleep complaints, and insufficient time for nonprofessional activities—was evaluated through the estimation of the prevalence ratio, with a confidence interval of 95%. Two hundred and fifty-eight female nursing personnel participated; 41.5% were moonlighters, and only 20 worked a shift of less than 12 h in length. Reports of migraine and need of medical care the 2 weeks before the survey were more prevalent among day than night workers (PR = 0.71; CI = 0.55–0.92 and PR = 0.71; CI = 0.52–0.95, respectively). Migraine headaches occurred less frequently among night than day workers as confirmed by comparing the reports of the night workers and day workers whose work history was always day shifts (PR = 0.74; CI = 0.57–0.96). Reports of mild emotional disorders (mild depression, tension, anxiety, or insomnia) were less frequent among night (PR = 0.76; CI = 0.59–0.98) and ex-night workers (PR = 0.68; CI = 0.50–0.91) than day workers who never had worked a night job. The healthy worker effect does not seem to explain the results of the comparisons between day and night workers. The possible role of exposure by day workers to some risk factors, such as stress, was suggested as an explanation for these results. No significant difference was observed between night and day workers as to sleep complaints, a result that may have been influenced by the nature of the shift-work schedule (no successive night shifts) and possibly nap taking during the night shift. Moreover, the long work hours and moonlighting of the healthcare workers, which is common in Brazil, may have masked other possible differences between the day and night workers. Among night workers, a significant relation was found between years working nights (more than 10 yrs) and high cholesterol values (PR = 2.58; CI = 1.07–6.27), a result that deserves additional study. Working nights more than four times per 2-week span was related to complaints about insufficient time for children (PR = 1.96; CI = 1.38–2.78) and rest/leisure (PR = 1.54; CI = 1.20–1.99). These results can be related to the “social value of time,” as evenings and nights are when families usually spend time together. The complexity of the professional life and the consequent heterogeneity of the group of workers under shift-work schemes confound the results. More in-depth study of the questions raised here demands a more sophisticated epidemiological treatment and larger sample size.  相似文献   

18.
Continuous rotating shiftworkers temporarily working overtime slept at least once during the working hours of their night shifts. They worked at an electric power distribution plant in São Paulo (Brazil). In order to detect factors that could be associated with sleeping on the job, we compared those who slept (sleep group – S) with those who did not sleep (non-sleep group – NS) as to the number of night shifts, the average length of night shifts, the variability in night shift onset and offset times and the length of sleep episodes at home between consecutive night shifts. Data collection was based on dairies filled in by the workers for 30 consecutive days. For both S and NS groups, the number of night shifts for each worker varied from 5 to 9, no difference being found between groups. Individual means of night shifts length varied from 9.4 ± 0.3 hr to 14.2 ± 0.6 hr; they were significantly longer in the S than in the NS group. Night shift onset times were shown to be significantly more variable in the S than in the NS group, whereas offset times did not differ significantly between groups. Length of sleep episodes at home was not significantly different between groups. Workers who slept on the job were those who had longer working bouts and / or more variable night shift onset times. Differences among workers may be due to individual strategies to cope with a situation in which the work schedule included night shifts that were much longer than the established 8 hours, and with many changes in onset times from one night shift to the next.  相似文献   

19.
The study examined the impact of family type on the timing and duration of sleep of 16 experienced female shiftworkers working a rotating 3-shift roster. The nurses lived in one of three domestic lifestyle arrangements: single with no child care responsibilities (N = 4), partnered with no child care responsibilities (N = 5) and partnered with child care responsibilities (N = 7). Self report sleep diaries were used to collect data over a period of 28 days, following which each nurse took part in a conversational interview. Comparisons of the roster mean sleep durations between groups show that nurses who do not have the added unwaged workload of child care, record significantly more sleep than nurses with such responsibilities. Analysis of the data by shift type shows a significant difference for afternoon shift: nurses with child care responsibilities record a significantly earlier rise time and a significantly shorter total sleep duration. The interview data further highlights how sleep patterns are related to the time constraints of both domestic and waged work.  相似文献   

20.
The present study aims to examine the influence of evening and night shift work, compared to day shift work, on melatonin secretion in nurses in a field setting. Effects were examined during a workday and during a day off. Both fixed schedules and mixed or rotating schedules were studied. In total, 170 nurses were studied: 89 nurses worked fixed schedules, 27 nurses worked the day shift, 12 nurses worked the evening shift, 50 nurses worked the night shift, and 82 nurses worked mixed schedules, with data collected during a day (n=17), evening (n=14), or night shift (n=50). All spot urine samples were collected during 24 h from the participants on a work day and on a day off and were analyzed for 6-sulphatoxymelatonin. On the day of urine sampling, participants filled in the Karolinska Sleep Diary. Additional information was collected through a telephone interview. Data were analyzed using a mixed procedure with autoregressive covariance structure. The present study showed that shift work affected the concentrations of 6-sulphatoxymelatonin in the short term by lower excretion in urine from nurses working the night compared to day shift on a workday and on a day off as well. No significant differences were observed between a workday and a day off when doing day and evening shifts, irrespective of mixed and fixed schedules. Sleep length was reduced workdays (from 6.1-6.8 h) among all nurses, compared to days off (from 7.8-8.7 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号