首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
C Lee  R J Suhadolnik 《FEBS letters》1983,157(1):205-209
The introduction of the cordycepin analog of (2'-5')An, (2'-5')ppp(3'dAp)n3'dA [referred to as (2'-5')p33'dAn], into mouse L929 cells and cultured human fibroblasts resulted in a dose-dependent inhibition of protein synthesis which was comparable to the inhibition observed by (2'-5')ppp(Ap)nA [referred to as (2'-5')p3An]. The inhibition of protein synthesis by (2'-5')p33'dAn was much more persistent than that of the naturally occurring (2'-5')p3An following prolonged incubation of cells. Furthermore, the (2'-5')p3An was cytotoxic to mammalian cells in culture, whereas the (2'-5')p33'dAn was not.  相似文献   

2.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

3.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate (2-5A) dependent endoribonuclease (RNase L), four 2-5A trimer analogs were examined to evaluate the effect of chirality of phosphorothioate substitution on biological activity. The chemical syntheses and purification of the four isomers of P-thio-3'-deoxyadenylyl-(2'-5')-P-thio-3'- deoxyadenylyl-(2'-5')-3'-deoxyadenosine, by the phosphoramidite approach, is described. The isolated intermediates were characterized by elemental and spectral analyses. The fully deblocked compounds were characterized by 1H and 31P NMR and HPLC analyses. The 2',5'-(3'dA)3 cores with either Rp or Sp chirality in the 2',5'-internucleotide linkages will bind to but will not activate RNase L. This is in contrast to 2',5'-A3 core analogs with either RpRp or SpRp phosphorothioate substitution in the 2',5'-internucleotide linkages which can bind to and activate RNase L. There are also marked differences in the ability of the 2',5'-A3 analogs to activate RNase L following introduction of the 5'-monophosphate. For example, the 5'monophosphates of 2',5'-(3'dA)3-RpRp and 2',5'-(3'dA)3-SpRp can bind to and activate RNase L, whereas the 5'-monophosphates of 2',5'-(3'dA)3-RpSp and 2',5'-(3'dA)3-SpSp can bind to but can not activate RNase L.  相似文献   

4.
2'-5'-Linked oligoadenylic acid 5'-triphosphates (2-5A) having chain lengths of 2-4 have been synthesized by polymerization of 3'-O-(o-nitrobenzyl)-N-benzoyladenosine 5'-phosphate followed by 5'-triphosphorylation via the imidazolidates. A large scale preparation of 5'-O-phosphoryladenylyl-(2'-5')-adenylyl-(2'-5')-adenosine was performed by the phosphotriester method using 5'-O-monomethoxytrityl-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate and 5'-O-phosphorodianilido-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate as intermediates. The trimer was also triphosphorylated by the imidazolide method. CD spectra for 5'-mono and triphosphorylated 2'-5' adenylates were measured as well as their UV hypochromicities. This triester method was also applied to the synthesis of 3',5'-bisphosphorylated protected oligoadenylic acids with natural 3'-5' linkages which could be used for further condensations to yield 5'-phosphorylated polynucleotides.  相似文献   

5.
Decauridylate containing exclusively a 2'-5' phospho-diester bond ([2'-5']U10) served as a template for the synthesis of oligoadenylates [oligo(A)s] from the 5'-phosphorimidazolide of 2'-5' diadenylate (ImpA-2'p5'A). Joining of [2'-5']U10and ImpA2'p5'A also took place in substantial amounts to yield long-chain oligoribonucleotides in the template-directed reaction. An unusual CD spectrum ascribed to helix formation between [2'-5']U10and [2'-5'](pA)2was observed under the same conditions as that of the template-directed reaction. The 3'-5' linked decauridylate ([3'-5']U10) also promoted the template-directed synthesis of oligo(A)s from ImpA2'p5'A, but more slowly compared with [2'-5']U10. The results indicate that short-chain RNA oligomers with a 2'-5' phosphodiester bond could lead to longer oligoribonucleotides by template-directed chain elongation.  相似文献   

6.
Analogs of 2-5A trimer 5'-monophosphate (2'-5')pA3,p5'A2'p5'A2'p5'A containing 9-(3-fluoro-3-deoxy-c-D-xylofuranosyl)adenine (AF) or 3'-fluoro-3'- deoxyadenosine (AF) at different positions of the chain have been synthesized. All of them were compared with (2'-5')pA3 and (2'-5')pA2 (3'dA) by (i) their ability to bind to 2-5A-dependent endoribonuclease(RNase L) of mouse L cells and of rabbit reticulocyte lysates and (ii) their susceptibility to the degradation by the (2'-5')phosphodiesterase activity. The results of this study suggest that the oligonucleotide conformation is important for its biochemical properties.  相似文献   

7.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

8.
Abstract: Neurofibroma type 1 tissue was investigated for the presence of growth-promoting activity on human neuroblastoma cells. The activity was isolated by gel filtration and reversed-phase column chromatographs from neurofibroma type 1 extracts. An adenosine-containing dinucleotide (adenylyl(3'-5')cytidine-3'-phosphate) was identified as one of the major components of the activities by its enzymatic fragmentation and liquid chromatography/mass spectrometry. Synthetic adenosine-containing dinucleotide derivatives such as cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, adenylyl(3'-5')cytidine, and adenylyl(2'-5')cytidine showed a similar action. Cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, and adenylyl(2'-5')cytidine, which are able to release a free adenosine through enzymatic hydrolysis, in particular elicited a strong activity corresponding to that of adenosine with the highest action. These results suggest that neuroblastoma cells are able to use adenosine-containing dinucleotides as well as mononucleotides for their survival and proliferation.  相似文献   

9.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.  相似文献   

10.
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.  相似文献   

11.
We present the high-resolution solution structures of a self-complementary DNA decamer duplex featuring a single alpha-anomeric nucleotide per strand encompassed by a set of 3'-3' and 5'-5' phosphodiester linkages, d(GCGAAT-3'-3'-alphaT-5'-5'-CGC)2, alphaT, and its unmodified control, d(GCGAATTCGC)2, obtained by restrained molecular dynamics. Interproton distance and deoxyribose ring torsion angle restraints were deduced from homonuclear NOESY and DQF-COSY data, respectively. For both the control and alphaT duplexes, excellent global convergence was observed from two different (A- and B-) starting models. The final average structures of the two duplexes are highly homologous, and overall possess the traits characteristic of right-handed B-DNA duplexes. However, localized differences between the two structures stem from the enhanced conformational exchange in the deoxyribose ring of the cytidine following the 5'-5' linkage, the C3'- exo pseudorotation phase angle of the alpha-nucleotide, and unusual backbone torsions in the 3'-3' and 5'-5' phosphodiester linkages. The structural data reported here are relevant to the design of antisense therapeutics comprised of these modifications.  相似文献   

12.
The effect of 2' and 3'-O-aminoacyl-dinucleoside phosphates cytidylyl(3'-5')-2'(3')-O-L-phenyl-alanyladenosine (I), cytidylyl(3'-5')-3'-deoxy-2'-O-L-phenylalanyladenosine (IIa), cytidylyl(3'-5')-2'-deoxy-3'-O-L-phenylalanyladenosine (IIIa), cytidylyl(3'-5')-3'-deoxy-2'-O-glycyladenosine (IIb), cytidylyl(3'-5')-2'-deoxy-3'-O-glycyladenosine (IIIb), cytidylyl(3'-5')-3'-deoxy-2'-O-L-leucyladenosine (IIc), cytidylyl(3'-5')-2'-deoxy-3'-O-L-leucyladenosine (IIIc), cytidylyl(3'-5')-3'-O-L-phenylalanyladenosine (IIId) as analogs of the 2'(3')-aminoacyl-tRNA termini, on chloramphenicol binding to 70S Excherichia coli ribosomes was investigated. The association constants (Kb) of the investigated compounds were determined by the equilibrium dialysis method. Based on the constancy of Kb over the range of inhibitor concentration, it was determined that the binding site of the 2' isomers IIa-IIc overlaps with the chloramphenicol site, whereas the variability of Kb for the 3' isomers IIIb, IIIc and especially IIIa seems to indicate that they do not achieve a complete fit. The consistently higher values of the Kb values for the 3' isomers IIIa-IIIc relative to that of the 2' isomers IIa-IIc also indicate a stabilization of the binding of the former due to a specific interaction between its amino acid portion and a ribosomal site.  相似文献   

13.
R Kierzek  L He    D H Turner 《Nucleic acids research》1992,20(7):1685-1690
Oligoribonucleotides with 2'-5' linkages have been synthesized on solid support. UV melting and CD experiments indicate complementary strands associate to give complexes with melting temperatures 30 to 40 degrees C lower than for duplexes formed by 3'-5' oligoribonucleotides with the same sequence. UV melting and imino proton NMR spectra and NOEs for (2'-5') CGGCGCCG are consistent with formation of an antiparallel duplex. The results suggest greater duplex stability was one factor favoring 3'-5' over 2'-5' linkages in evolution.  相似文献   

14.
1989年,我们曾首次证实干扰素作用介导物pppA2'p5'A2'p5'A(2'-5'-三腺苷酸,2'-5'P_3A_3)能引起巨噬细胞中cAMP,cGMP水平升高,表明这两种环核苷酸在传递干扰素信息中起着重要作用。在上述研究的基础上,本研究观察了2'-5'P_3A_3对腺苷酸环化酶(AC)和cAMP-磷酸二酯酶(cAMP-PDE)两种酶的活性影响,结果发现,1×10~(-6)mol/L的2'-5'P_3A_3可显著增加AC的活性,而对cAMP-PDE活性沒有显著影响,这说明2'-5'P_3A_3引起的细胞内cAMP水平的升高是由于激活AC而使其生成增多,而不是抑制cAMP-PDE而使其降解减少的结果。  相似文献   

15.
The syntheses of two new nucleoside phosphoramidites containing a hydroxyl functionality masked by a levulinate protecting group are presented; N(4)-(2-(ethylene glycol-2-levulinate)ethyl)-5-methyl-5'-(4,4'-dimethoxytrityl)-3'-O-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxycytidine 1 and 5-(N-(6-O-levulinoyl-1-aminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 3. Optimization of solid-phase-supported synthetic parameters for incorporation of these into DNA, removal of the levulinate group by exposure to dilute hydrazine, and subsequent attachment of dye labels is described. Synthesis of the known compound 5-(N-(6-trifluoroacetylaminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 2 (1), containing a masked amine at the end of an alkyl chain attached at the 5 position, was also revisited using new techniques developed for 3.  相似文献   

16.
The structural requirements of (2'-5')-oligoadenylic acid (pppA(2'p5'A)x, X greater than or equal to 1 or (2'-5'An) for inhibition of protein synthesis in cells were examined with a modified calcium-coprecipitation technique, using a series of trinucleotide analogs (pppA2'p5'A2'p5'N, N=rC, rG, rU, T, dC, dG, dA). In this system both the degree and the duration of the inhibition of protein synthesis were dependent on the added concentration of (2'-5')A3. Of all the heterotrimers, only the deoxy A derivative was active as an inhibitor of protein synthesis, while the other members of the analog series were found to have no inhibitory effects. In competition experiments between (2'-5')A3 and the non-active analogs, three heterotrimers were shown to reduce the activity of (2'-5')A3 in protein inhibition. In contrast, the dephosphorylated (2'-5')A3 had no inhibitory effect and was not effective in blocking (2'-5')A3. These results indicate that the 5'-terminal triphosphate is important for binding of (2'-5')A3 to the site of (2'-5')An action and the adenine base at the 2'-terminus is important for activating the machinery responsible for protein synthesis inhibition in the cells, most likely the (2'-5')An-activated nuclease.  相似文献   

17.
Two 5'-modified (2'-5')(A)4 oligomers with an increased resistance to phosphatase degradation were synthesized and evaluated for their ability to develop an antiviral response when introduced into intact cells by microinjection or by chemical conjugation to poly(L-lysine). The enzymatic synthesis of 5'-gamma-phosphorothioate and beta,gamma-difluoromethylene (2'-5')(A)4 from adenosine 5'-O-(3-thiotriphosphate) and adenosine beta,gamma-difluoromethylenetriphosphate by (2'-5')-oligoadenylate synthetase is described. The isolation and characterization of these (2'-5')(A)4 analogues were achieved by high-performance liquid chromatography. The structures of 5'-modified tetramers were corroborated by enzyme digestion. These two 5'-modified tetramers compete as efficiently as natural (2'-5')(A)4 for the binding of a radiolabeled (2'-5')(A)4 probe to ribonuclease (RNase) L. Nevertheless, at the opposite to 5'-gamma-phosphorothioate (2'-5')(A)4, beta,gamma-difluoromethylene (2'-5')(A)4 failed to induce an antiviral response after microinjection in HeLa cells. In addition, it behaves as an antagonist of RNase L as demonstrated by its ability to inhibit the antiviral properties of 5'-gamma-phosphorothioate (2'-5')(A)4 when both are microinjected in HeLa cells. The increased metabolic stability of 5'-gamma-phosphorothioate (2'-5')(A)4 as compared to that of (2'-5')(A)4 was first demonstrated in cell-free extracts and then confirmed in intact cells after introduction in the form of a conjugate to poly(L-lysine). Indeed, 5'-gamma-phosphorothioate (2'-5')(A)4-poly(L-lysine) conjugate induces protein synthesis inhibition and characteristic ribosomal RNA cleavages for longer times than unmodified (2'-5')(A)4-poly(L-lysine) in the same cell system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cyclization of 2',3'-seco-5'- CMP and UMP with dicyclohexylcarbodiimide leads to 2',3'-seco-3':5'- cCMP and cUMP, formal structural analogues of 3':5'- cCMP and cUMP. POCl3 phosphorylation of 2',3'-secocytidine gave the same product in 50% yield, plus three additional seco nucleotides, one of which was independently obtained by enzymatic phosphorylation with the wheat shoot phosphotransferase system. The behaviour of these nucleotides has been examined in several enzyme systems. In particular, the seco 3':5'- cyclic phosphates are resistant to beef heart cyclic nucleotide phosphodiesterase, but are slowly hydrolyzed to the monophosphates by higher plant cyclic nucleotide phosphodiesterase.  相似文献   

19.
The variations in base stacking interactions of two isomeric RNA hexamers, 3'-5'r (AACCUU) and 2'-5'r' (AACCUU), have been studied using temperature dependent CD spectroscopy. Both RNA hexamers, in single strand form, exhibited a right handed helical sense. Van't Hoff analysis of the CD spectral results, derived from a two state model, gave a higher enthalpy of stacking for 3'-5' RNA than for 2'-5'RNA. The results suggest that 3'-5' linkage in RNA facilitates formation of better helical stacks in relation to an isomeric 2'-5' linkage.  相似文献   

20.
Wang Y  Silverman SK 《Biochemistry》2005,44(8):3017-3023
Previous experiments have identified numerous RNA ligase deoxyribozymes, each of which can synthesize either 2',5'-branched RNA, linear 2'-5'-linked RNA, or linear 3'-5'-linked RNA. These products may be formed by reaction of a 2'-hydroxyl or 3'-hydroxyl of one RNA substrate with the 5'-triphosphate of a second RNA substrate. Here the inherent propensities for nucleophilic reactivity of specific hydroxyl groups were assessed using RNA substrates related to the natural sequences of spliceosome substrates and group II introns. With the spliceosome substrates, nearly half of the selected deoxyribozymes mediate a ligation reaction involving the natural branch-point adenosine as the nucleophile. In contrast, mostly linear RNA is obtained with the group II intron substrates. Because the two sets of substrates differ at only three nucleotides, we conclude that the location of the newly created ligation junction in DNA-catalyzed branch formation depends sensitively on the RNA substrate sequences. During the experiment that led primarily to branched RNA, we abruptly altered the selection strategy to demand that the deoxyribozymes create linear 3'-5' linkages by introducing an additional selection step involving the 3'-5'-selective 8-17 deoxyribozyme. Although no 3'-5' linkages (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号