共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
He M Yuan D Lin W Pang R Yu X Yang M 《Bioorganic & medicinal chemistry letters》2005,15(17):3978-3981
Four new isoquinoline derivatives bearing guanidinium group or amino group-terminated side chain were synthesized to target the HIV-1 TAR element. Their abilities to bind TAR RNA and inhibit Tat-TAR RNA interaction were determined by CE analysis, a Tat-dependent HIV-1 LTR-driven CAT assay and SIV-induced syncytium evaluation. 相似文献
3.
Oligonucleotides containing 3'-O-methyl ribonucleosides were synthesized, and their thermal stabilities and global conformations with RNA and DNA have been studied. The duplexes displayed lower T(m) values as compared to the unmodified ones, and adopted A-conformations. Furthermore, they are not a substrate for RNase H, are slightly resistant to snake venom phosphodiesterase, and are not cleaved by nuclease S 1. 相似文献
4.
Elmén J Zhang HY Zuber B Ljungberg K Wahren B Wahlestedt C Liang Z 《FEBS letters》2004,578(3):285-290
We have evaluated antisense design and efficacy of locked nucleic acid (LNA) and DNA oligonucleotide (ON) mix-mers targeting the conserved HIV-1 dimerization initiation site (DIS). LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal toxicity. We show that inclusion of LNA bases in antisense ONs augments the interference of HIV-1 genome dimerization. We also demonstrate the concomitant RNase H activation by six consecutive DNA bases in an LNA/DNA mix-mer. We show ON uptake via receptor-mediated transfection of a human T-cell line in which the mix-mers subsequently inhibit replication of a clinical HIV-1 isolate. Thus, the technique of LNA/DNA mix-mer antisense ONs targeting the conserved HIV-1 DIS region may provide a strategy to prevent HIV-1 assembly in the clinic. 相似文献
5.
A series of novel substituted purines containing a side chain with a terminal amino or guanidyl group were designed and synthesized as HIV-1 Tat-TAR inhibitors. All the compounds could effectively block the TAR transactivation in human 293T cells with the CAT expression percentage ranging from 34.4% to 65.7% and showed high antiviral effects with low cytotoxicities in inhibiting the formation of SIV-induced syncytium in CEM174 cells. Molecular modeling studies by Auto-dock process suggest that the compounds bind to TAR RNA in two different modes. 相似文献
6.
Brodin P Pinskaya M Parsch U Bischerour J Leh H Romanova E Engels JW Gottikh M Mouscadet JF 《Nucleosides, nucleotides & nucleic acids》2001,20(4-7):481-486
Integration of the proviral DNA into the genome of infected cells is a key step of HIV-1 replication. Integration is catalyzed by the viral enzyme integrase (IN). 6-oxocytidine-containing oligonucleotides were found to be efficient inhibitors of integrase in vitro. The inhibitory effect is sequence-specific and strictly requires the presence of the 6-oxocytidine base. It is due to the impairment of the integrase binding to its substrate and does not involve an auto-structure of the oligonucleotide. 相似文献
7.
Arzumanov A Stetsenko DA Malakhov AD Reichelt S Sørensen MD Babu BR Wengel J Gait MJ 《Oligonucleotides》2003,13(6):435-453
8.
A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction 总被引:21,自引:0,他引:21
M Braddock A M Thorburn A Chambers G D Elliott G J Anderson A J Kingsman S M Kingsman 《Cell》1990,62(6):1123-1133
Replication of HIV-1 depends on the viral Tat protein, which functions via a target sequence, TAR, present in the proviral long terminal repeat (LTR) and at the 5' end of viral mRNAs. We have shown that Tat potentiates the expression of TAR-containing RNAs, but only when Tat and the TAR-containing RNA are present in the nucleus. We now show that a small change in the TAR loop abolishes nuclear potentiation by Tat. Furthermore, the HIV-1 U3 region induces expression incompetence in mRNA synthesized by this promoter. RNAs of identical structure are, however, translated efficiently when produced from the CMV-IE promoter. The Tat-TAR system appears, therefore, to rescue the expression potential of HIV-1 LTR-directed RNA. 相似文献
9.
Triplex forming oligonucleotides (TFOs) are potentially useful in targeting RNA for antisense therapeutic applications. To determine the feasibility of targeting polypurine RNA with nuclease-resistant oligonucleotides, TFOs containing 2'-deoxy or 2'-O-methyl (2'-OMe) backbones, designed to form pyrimidine motif triplexes with RNA, were synthesized. TFOs were made which can form trimolecular triplexes, or bimolecular, 'clamp' triplexes with polypurine RNA and DNA. It was found that the relative stabilities of the triplexes formed followed the order: M.DM(clamp)>D.DD approximately M.DD>M. RM>D.DM>M.RD approximately M.DM, where M is a 2'-OMe, D is a DNA and R is an RNA backbone. The third strand is listed first, separated by a dot from the purine strand of the Watson-Crick duplex, followed by the pyrimidine strand of the duplex. The results described here provide insight into the feasibility of using TFOs containing a 2'-OMe backbone as antisense agents. 相似文献
10.
Ermolinskiĭ BS Fomicheva MV Efimtseva EV Mikhaĭlov SN Esipov DS Boldyreva EF Korobko VG van Aerschot A Herdewijn P 《Bioorganicheskaia khimiia》2002,28(1):56-63
A convenient method of regioselective introduction of 1-beta-D-galactopyranosylthymine into oligonucleotides was developed and the substrate properties of the modified oligonucleotides were investigated in the enzymic reaction of formation and hydrolysis of internucleotide bonds. The English version of the paper. 相似文献
11.
Inhibition of HIV-1 Tat-TAR interaction by diphenylfuran derivatives: effects of the terminal basic side chains. 总被引:2,自引:0,他引:2
N Gelus C Bailly F Hamy T Klimkait W D Wilson D W Boykin 《Bioorganic & medicinal chemistry》1999,7(6):1089-1096
A series of four biscationic diphenylfuran derivatives was used to investigate drug binding to the transactivation response element (TAR) RNA. The drugs, which are active against the Pneumocystis carinii pathogen (PCP), differ by the nature of the terminal basic side chains. Furimidazoline (DB60) is more potent at inhibiting binding of the Tat protein to TAR than furamidine (DB75) and the amidine-substituted analogues DB244 and DB226. In vivo studies using the fusion-induced gene stimulation (FIGS) assay entirely agree with the in vitro gel mobility shift data. The capacity of the drugs to antagonize Tat binding correlates with their RNA binding properties determined by melting temperature and RNase protection experiments. Footprinting studies indicate that the bulge region of TAR provides the identity element for the diphenylfurans. Access of the drugs to the major groove cavity at the pyrimidine bulge depends on the bulk of the alkylamine substituents. Experiments using TAR mutants show that the bulge of TAR is critical for drug binding but also reveal that the fit of the drugs into the major groove cavity of TAR does not involve specific contacts with the highly conserved residue U23 or the C x G26-39 base pair. The binding essentially involves shape recognition. The results are also discussed with respect to the known activity of the drug against PCP which is the major cause of mortality in AIDS patients. This study provides guidelines for future development of TAR-targeted anti-HIV-1 drugs. 相似文献
12.
Martin A Maier Janet M Leeds Guity Balow Robert H Springer Ramesh Bharadwaj Muthiah Manoharan 《Biochemistry》2002,41(4):1323-1327
The tricyclic cytosine analogues phenoxazine and 9-(2-aminoethoxy)-phenoxazine ("G-clamp") are known to significantly enhance the binding affinity of oligonucleotides to their complementary target DNA or RNA strands. To investigate their effect on the nuclease resistance, they were incorporated into model oligomers with a natural phosphodiester backbone, and enzymatic degradation was monitored in an in vitro assay with snake venom phosphodiesterase as the hydrolytic enzyme. In both cases, a single incorporation at the 3'-terminus completely protected the oligonucleotides against 3'-exonuclease attack. Further investigations indicate that the observed high nuclease resistance is not due to the lack of binding affinity to the enzyme's active site, since these modified oligonucleotides were able to inhibit degradation of a natural DNA fragment by bovine intestinal mucosal phosphodiesterase in a dose-dependent manner. 相似文献
13.
Prikazchikova TA Volkov EM Zubin EM Romanova EA Gottikh MB 《Molekuliarnaia biologiia》2007,41(1):130-138
Integration of human immunodeficiency virus type 1 DNA into the infected cell genome is one of the key steps of the viral replication cycle. Therefore viral enzyme integrase, which realizes the integration, is of interest as a target for new antiviral drugs. Conjugates of 11-mer single stranded oligonucleotides with hydrophobic molecules are shown to be efficient integrase inhibitors since they induce dissociation of the integrase-viral DNA complex. The effect of the oligonucleotide length and structure as well as the structure of hydrophobic molecules on the conjugate inhibitory activity has been studied. Conjugates with eosin and oleic acid are shown to be the most active. Conjugates of these molecules with 2'-O-methyl-oligonucleotide inhibit integrase at 50-100 nM and have no influence on a number of other DNA-binding enzymes. 相似文献
14.
Jing N Marchand C Guan Y Liu J Pallansch L Lackman-Smith C De Clercq E Pommier Y 《DNA and cell biology》2001,20(8):499-508
As novel anti-HIV agents, the G-tetrad-forming oligonucleotides have been explored for their structure-activity relations with regard to inhibition of integrase (IN) (N. Jing, Expert Opin. Investig. Drugs (2000) 9, 1777-1785). We have now developed two families of G-quartet oligonucleotides: T40217-T40222, with potential formation of a tail-to-tail G-quartet dimer, and T40224-T40227, with phosphorothioate (PT) linkages in the guanine loops. The results obtained from biophysical measurements and the assays of the inhibition of HIV-1 IN and virus replication demonstrated that an increase in the length of the G-quartet structure from a monomer (15A) to a tail-to-tail dimer (47A) does not distinctly disrupt the inhibition of HIV-1 IN activity or the inhibition of HIV-1 replication in cell cultures. G-quartet oligonucleotides were observed to induce molecular aggregation of HIV-1 IN and interrupt the binding of viral DNA to HIV-1 IN. Also, PT substitutions did not confer any advantages compared with the regular phosphodiesters for the inhibition of HIV-1 replication by intramolecular G-quartets. The G-quartet motif is the primary requirement for the remarkable nuclease resistance and pronounced biological efficacy of these oligonucleotides. 相似文献
15.
Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro 总被引:5,自引:0,他引:5
Jing N Marchand C Liu J Mitra R Hogan ME Pommier Y 《The Journal of biological chemistry》2000,275(28):21460-21467
The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation. 相似文献
16.
The potential of aminoglycosides to induce RNA-invasion has been demonstrated. For this purpose, aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides have been synthesized entirely on a solid phase. The synthesis includes an automated oligonucleotide chain elongation to solid-supported neomycin, ribostamycin, and methyl neobiosamine, and a two-step deprotection/release of the solid-supported conjugate, which allows exploitation of a simple protecting group scheme. Conjugates have been targeted to a (19)F labeled HIV-1 TAR RNA model (Trans Activation Response element of HIV), which allows monitoring of the invasion by (19)F NMR spectroscopy. A remarkably enhanced invasion, compared to that resulting from the corresponding unmodified 2'-O-methyl oligoribonucleotide (5'-CAGGCUCA-3'), has been obtained by the neomycin conjugate. The increased affinity results from a cooperative binding of the neomycin moiety and hybridization, though the invasion may also follow a mechanism, in which the first molar equivalent of the conjugate induces hybridization of the second. 相似文献
17.
《Bioorganic & medicinal chemistry letters》2014,24(24):5576-5580
Basic molecular building blocks such as benzene rings, amidines, guanidines, and amino groups have been combined in a systematic way to generate ligand candidates for HIV-1 TAR RNA. Ranking of the resulting compounds was achieved in a fluorimetric Tat-TAR competition assay. Although simple molecules such as phenylguanidine are inactive, few iteration steps led to a set of ligands with IC50 values ranging from 40 to 150 μM. 1,7-Diaminoisoquinoline 17 and 2,4,6-triaminoquinazoline 22 have been further characterized by NMR titrations with TAR RNA. Compound 22 is bound to TAR at two high affinity sites and shows slow exchange between the free ligand and the RNA complex. These results encourage investigations of dimeric ligands built from two copies of compound 22 or related heterocycles. 相似文献
18.
19.
Stable triple helices are formed upon binding of RNA oligonucleotides and their 2'-O-methyl derivatives to double-helical DNA. 总被引:5,自引:0,他引:5
C Escudé J S Sun M Rougée T Garestier C Hélène 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1992,315(13):521-525
Pyrimidine oligoribonucleotides bind to the major groove of double-helical DNA at homopurine.homopyrimidine sequences. They recognize Watson-Crick base pairs by forming T.A x U and C.G x C base triplets via Hoogsteen hydrogen bonding. The stability of these triple helices is much higher than that of triple helices formed by oligodeoxyribonucleotides as shown by an increase of the temperature at which half-dissociation of the third strand occurs. When the 2'-hydroxyl group of ribose moieties is replaced by 2'-O-methyl substituent, triple helix stability is further increased. 相似文献
20.
Olejniczak AB Koziolkiewicz M Lesnikowski ZJ 《Antisense & nucleic acid drug development》2002,12(2):79-94
Boronated oligonucleotides are potential candidates for antisense oligonucleotide technology (AOT), boron neutron capture therapy (BNCT), and as tools in molecular biology. A method was developed for the solid phase synthesis of oligonucleotides containing 2'-O-(o-carboran-1-yl-methyl) (2'-CBM) group. Synthesis was performed using a standard beta-cyanoethyl cycle and automated DNA synthesizer. Manual steps were performed for the insertion of a modified monomer bearing the 2'-CBM group. Several tetradecanucleotides complementary to DNA-HCMV, and bearing 2'-CBM modification near the 3'-end or 5'-end or in the middle of the oligonucleotide chain were synthesized. The resulting oligomers were characterized by polyacrylamide gel electrophoresis (PAGE), reverse phase high-performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and ultraviolet spectroscopy (UV), circular dichroism (CD), and melting temperature (Tm) measurements. Tm of duplexes formed between 2'-CBM-modified tetradecanucleotides and complementary DNA and RNA template were compared with those formed by the unmodified oligonucleotide and complementary sequence. The stability of 2'-CBM oligonucleotides in the presence of phosphodiesterase I from Crotalus atrox venom and in human serum was studied. Oligonucleotides bearing the 2'-CBM group are characterized by increased resistance to enzymatic digestion, increased lipophilicity, and the ability to form stable duplexes with complementary templates. 相似文献