首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivating mutations and/or deletions of PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) are responsible for X-linked hypophosphatemic rickets in humans and in the murine homolog Hyp. The predominant osteoblastic expression of Phex has implicated a primary metabolic osteoblast defect in the pathophysiology of this disorder. By targeting PHEX expression to osteoblasts in the Hyp genetic background, we aimed to correct the corresponding biochemical and morphological abnormalities and obtain information on their pathogenetic mechanism. When transgene Phex expression, driven by a mouse pro-alpha1(I) collagen gene promoter, was crossed into the Hyp background, it improved the defective mineralization of bone and teeth but failed to correct the hypophosphatemia and altered vitamin D metabolism associated with the disorder. Ex vivo bone marrow cultures confirmed the amelioration in the Hyp-associated matrix mineralization defect after Phex expression. These findings suggest that while the Hyp bone and teeth abnormalities partially correct after PHEX gene transfer, additional factors and/or sites of PHEX expression are likely critical for the elaboration of the appropriate molecular signals that alter renal phosphate handling and vitamin D metabolism in this disorder.  相似文献   

2.
3.
X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is caused by loss-of-function mutations of PHEX gene in osteoblast cells, leading to rachitic bone disease and hypophosphatemia. Available evidence today indicates that the bone defect in XLH is caused not only by hypophosphatemia and altered vitamin D metabolism, but also by locally released osteoblastic mineralization inhibitory factor(s), referred to as minhibin. In our present study, we found that suppression of PHEX expression by PHEX antisense in human osteoblast cells caused an increase in cathepsin D expression at protein, but not mRNA, levels. This was associated with a decrease in cathepsin D degradation and an increased cathepsin D release into culture media. Our results also showed that lowering cathepsin D activity in antisense cell conditioned media abolished their inhibitory effect on osteoblast cell calcification, suggesting the involvement of cathepsin D in mediating the minhibin activity of the antisense cell conditioned media.  相似文献   

4.
X-linked hypophosphatemia (XLH) is characterized by hypophosphatemia and impaired mineralization caused by mutations of the PHEX endopeptidase (phosphate-regulating gene with homologies to endopeptidases on the X chromosome), which leads to the overproduction of the phosphaturic fibroblast growth factor 23 (FGF23) in osteocytes. The mechanism whereby PHEX mutations increase FGF23 expression and impair mineralization is uncertain. Either an intrinsic osteocyte abnormality or unidentified PHEX substrates could stimulate FGF23 in XLH. Similarly, impaired mineralization in XLH could result solely from hypophosphatemia or from a concomitant PHEX-dependent intrinsic osteocyte abnormality. To distinguish between these possibilities, we assessed FGF23 expression and mineralization after reciprocal bone cross-transplantations between wild-type (WT) mice and the Hyp mouse model of XLH. We found that increased FGF23 expression in Hyp bone results from a local effect of PHEX deficiency, since FGF23 was increased in Hyp osteocytes before and after explantation into WT mice but was not increased in WT osteocytes after explantation into Hyp mice. WT bone explanted into Hyp mice developed rickets and osteomalacia, but Hyp bone explanted into WT mice displayed persistent osteomalacia and abnormalities in the primary spongiosa, indicating that both phosphate and PHEX independently regulate extracellular matrix mineralization. Unexpectedly, we observed a paradoxical suppression of FGF23 in juvenile Hyp bone explanted into adult Hyp mice, indicating the presence of an age-dependent systemic inhibitor of FGF23. Thus PHEX functions in bone to coordinate bone mineralization and systemic phosphate homeostasis by directly regulating the mineralization process and producing FGF23. In addition, systemic counterregulatory factors that attenuate the upregulation of FGF23 expression in Hyp mouse osteocytes are present in older mice.  相似文献   

5.
FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate.   总被引:23,自引:0,他引:23  
Oncogenic osteomalacia (OOM), X-linked hypophosphatemia (XLH), and autosomal dominant hypophosphatemic rickets (ADHR) are phenotypically similar disorders characterized by hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum calcitriol concentrations, normal serum concentrations of calcium and parathyroid hormone, and defective skeletal mineralization. XLH results from mutations in the PHEX gene, encoding a membrane-bound endopeptidase, whereas ADHR is associated with mutations of the gene encoding FGF-23. Recent evidence that FGF-23 is expressed in mesenchymal tumors associated with OOM suggests that FGF-23 is responsible for the phosphaturic activity previously termed "phosphatonin." Here we show that both wild-type FGF-23 and the ADHR mutant, FGF-23(R179Q), inhibit phosphate uptake in renal epithelial cells. We further show that the endopeptidase, PHEX, degrades native FGF-23 but not the mutant form. Our results suggest that FGF-23 is involved in the pathogenesis of these three hypophosphatemic disorders and directly link PHEX and FGF-23 within the same biochemical pathway.  相似文献   

6.
Summary A fragment that contains a (CA)n sequence from the 3 untranslated region of the dystrophin gene can be amplified by the polymerase chain reaction and shows length polymorphism in a Caucasian population. The two common alleles differ by 4bp. This new genetic marker has a heterozygosity of about 35% and is typed more rapidly than a conventional restriction fragment length polymorphism. Its localisation at the 3 end of the dystrophin gene makes it a useful tool for diagnostic applications in families with Duchenne/ Becker muscular dystrophy, and for the analysis of intragenic recombination.  相似文献   

7.
There is evidence for a hormone/enzyme/extracellular matrix protein cascade involving fibroblastic growth factor 23 (FGF23), a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), and a matrix extracellular phosphoglycoprotein (MEPE) that regulates systemic phosphate homeostasis and mineralization. Genetic studies of autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH) identified the phosphaturic hormone FGF23 and the membrane metalloprotease PHEX, and investigations of tumor-induced osteomalacia (TIO) discovered the extracellular matrix protein MEPE. Similarities between ADHR, XLH, and TIO suggest a model to explain the common pathogenesis of renal phosphate wasting and defective mineralization in these disorders. In this model, increments in FGF23 and MEPE, respectively, cause renal phosphate wasting and intrinsic mineralization abnormalities. FGF23 elevations in ADHR are due to mutations of FGF23 that block its degradation, in XLH from indirect actions of inactivating mutations of PHEX to modify the expression and/or degradation of FGF23 and MEPE, and in TIO because of increased production of FGF23 and MEPE. Although this model is attractive, several aspects need to be validated. First, the enzymes responsible for metabolizing FGF23 and MEPE need to be established. Second, the physiologically relevant PHEX substrates and the mechanisms whereby PHEX controls FGF23 and MEPE metabolism need to be elucidated. Finally, additional studies are required to establish the molecular mechanisms of FGF23 and MEPE actions on kidney and bone, as well as to confirm the role of these and other potential "phosphatonins," such as frizzled related protein-4, in the pathogenesis of the renal and skeletal phenotypes in XLH and TIO. Unraveling the components of this hormone/enzyme/extracellular matrix pathway will not only lead to a better understanding of phosphate homeostasis and mineralization but may also improve the diagnosis and treatment of hypo- and hyperphosphatemic disorders.  相似文献   

8.
Vitamin D-dependent rickets type II is a hereditary disease resulting from a defective vitamin D receptor. In three Japanese patients with vitamin D-dependent rickets type II whose fibroblasts displayed normal cytosol binding and impaired nuclear uptake of 1,25-dihydroxyvitamin D3, western, Southern, and northern analyses failed to disclose any abnormalities in vitamin D3 receptor protein and its gene. Exons 2 and 3 of the vitamin D receptor cDNA, which encode the DNA-binding domain consisting of two zinc fingers, were amplified by PCR and sequenced to identify the specific mutations in the vitamin D receptor gene. In the three patients and one normal control a T-to-C transition was found in the putative initiation codon, while this transition was not observed in another normal control. This finding suggested that an original initiation codon was located at positions 10-12 in the human vitamin D receptor cDNA sequence reported previously. In contrast, a unique G-to-A transition at position 140 in exon 3, resulting in substitution of arginine by glutamine at residue 47, was revealed only in these three patients. The arginine at 47 is located between two zinc fingers and is conserved within all steroid hormone receptors. Therefore, it is highly conceivable that this amino acid substitution is responsible for the defect of the vitamin D receptor in the patients. Single-strand conformation polymorphism analysis of amplified DNA confirmed that all patients were homozygous and that parents from one family were heterozygous carriers for this mutation.  相似文献   

9.
Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, phosphate-regulating enzyme. We therefore tested the hypothesis that circulating ASARM peptides also "indirectly" contribute to a bone-renal PHEX-dependent hypophosphatemia in normal mice. Male mice (n = 5; 12 wk) were fed for 8 wk with a normal phosphorus and vitamin D(3) diet (1% P(i) diet) or a reduced phosphorus and vitamin D(3) diet (0.1% P(i) diet). For the final 4 wk, transplantation of mini-osmotic pumps supplied a continuous infusion of either ASARM peptide (5 mg·day(-1)·kg(-1)) or vehicle. HYP, autosomal recessive hypophosphatemic rickets (ARHR), and normal mice (no pumps or ASARM infusion; 0.4% P(i) diet) were used in a separate experiment designed to measure and compare circulating ASARM peptides in disease and health. ASARM treatment decreased serum phosphate concentration and renal phosphate cotransporter (NPT2A) mRNA with the 1% P(i) diet. This was accompanied by a twofold increase in serum ASARM and 1,25-dihydroxy vitamin D(3) [1,25 (OH)(2)D(3)] levels without changes in parathyroid hormone. For both diets, ASARM-treated mice showed significant increases in serum fibroblast growth factor 23 (FGF23; +50%) and reduced serum osteocalcin (-30%) and osteopontin (-25%). Circulating ASARM peptides showed a significant inverse correlation with serum P(i) and a significant positive correlation with fractional excretion of phosphate. We conclude that constitutive overexpression of ASARM peptides plays a "component" PHEX-independent part in the HYP and ARHR hypophosphatemia. In contrast, with wild-type mice, ASARM peptides likely play a bone PHEX-dependent role in renal phosphate regulation and FGF23 expression. They may also coordinate FGF23 expression by competitively modulating PHEX/DMP1 interactions and thus bone-renal mineral regulation.  相似文献   

10.
Hypophosphatemia due to isolated renal phosphate wasting results from a heterogeneous group of disorders. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is an autosomal recessive form that is characterized by reduced renal phosphate reabsorption, hypophosphatemia, and rickets. It can be distinguished from other forms of hypophosphatemia by increased serum levels of 1,25-dihydroxyvitamin D resulting in hypercalciuria. Using SNP array genotyping, we mapped the disease locus in two consanguineous families to the end of the long arm of chromosome 9. The candidate region contained a sodium-phosphate cotransporter gene, SLC34A3, which has been shown to be expressed in proximal tubulus cells. Sequencing of this gene revealed disease-associated mutations in five families, including two frameshift and one splice-site mutation. Loss of function of the SLC34A3 protein presumably results in a primary renal tubular defect and is compatible with the HHRH phenotype. We also show that the phosphaturic factor FGF23 (fibroblast growth factor 23), which is increased in X-linked hypophosphatemic rickets and carries activating mutations in autosomal dominant hypophosphatemic rickets, is at normal or low-normal serum levels in the patients with HHRH, further supporting a primary renal defect. Identification of the gene mutated in a further form of hypophosphatemia adds to the understanding of phosphate homeostasis and may help to elucidate the interaction of the proteins involved in this pathway.  相似文献   

11.
12.
Ataxia with vitamin E deficiency (AVED), or familial isolated vitamin E deficiency, is a rare autosomal recessive neurodegenerative disease characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. We recently have demonstrated that AVED is caused by mutations in the gene for alpha-tocopherol transfer protein (alpha-TTP). We now have identified a total of 13 mutations in 27 families. Four mutations were found in >=2 independent families: 744delA, which is the major mutation in North Africa, and 513insTT, 486delT, and R134X, in families of European origin. Compilation of the clinical records of 43 patients with documented mutation in the alpha-TTP gene revealed differences from Friedreich ataxia: cardiomyopathy was found in only 19% of cases, whereas head titubation was found in 28% of cases and dystonia in an additional 13%. This study represents the largest group of patients and mutations reported for this often misdiagnosed disease and points to the need for an early differential diagnosis with Friedreich ataxia, in order to initiate therapeutic and prophylactic vitamin E supplementation before irreversible damage develops.  相似文献   

13.
Waardenburg syndrome (WS) type 1 is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary abnormalities of the eye, hair, and skin, and dystopia canthorum. The phenotype is variable and affected individuals may exhibit only one or a combination of several of the associated features. To assess the relationship between phenotype and gene defect, clinical and genotype data on 48 families (271 WS individuals) collected by members of the Waardenburg Consortium were pooled. Forty-two unique mutations in the PAX3 gene, previously identified in these families, were grouped in five mutation categories: amino acid (AA) substitution in the paired domain, AA substitution in the homeodomain, deletion of the Ser-Thr-Pro-rich region, deletion of the homeodomain and the Ser-Thr-Pro-rich region, and deletion of the entire gene. These mutation classes are based on the structure of the PAX3 gene and were chosen to group mutations predicted to have similar defects in the gene product. Association between mutation class and the presence of hearing loss, eye pigment abnormality, skin hypopigmentation, or white forelock was evaluated using generalized estimating equations, which allowed for incorporation of a correlation structure that accounts for potential similarity among members of the same family. Odds for the presence of eye pigment abnormality, white forelock, and skin hypopigmentation were 2, 8, and 5 times greater, respectively, for individuals with deletions of the homeodomain and the Pro-Ser-Thr-rich region compared to individuals with an AA substitution in the homeodomain. Odds ratios that differ significantly from 1.0 for these traits may indicate that the gene products resulting from different classes of mutations act differently in the expression of WS. Although a suggestive association was detected for hearing loss with an odds ratio of 2.6 for AA substitution in the paired domain compared with AA substitution in the homeodomain, this odds ratio did not differ significantly from 1.0. Received: 27 July 1997 / Accepted: 9 December 1997  相似文献   

14.
The X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is caused by loss-of-function mutations of PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) leading to rachitic bone disease and hypophosphatemia. Available evidence today indicates that the bone defect in XLH is caused not only by hypophosphatemia and altered vitamin D metabolism but also by factor(s) locally released by osteoblast cells (ObCs). The identity of these ObC-derived pathogenic factors remains unclear. In our present study, we report our finding of a prominent protein in the culture media derived from ObC of the hypophosphatemic (Hyp) mice, a murine homolog of human XLH, which was identified as the murine procathepsin D (Cat D). By metabolic labeling studies, we further confirmed that Hyp mouse ObCs released greater amount of Cat D into culture media. This increased Cat D release by Hyp mouse ObCs was unlikely to be due to nonspecific cell damage or heterogeneous cell population and was found to be associated with an increased Cat D expression at the protein level, possibly due to a reduced Cat D degradation. However, we were not able to detect a direct effect of PHEX protein on Cat D cleavage. In support of the involvement of Cat D in mediating the inhibitory effect of Hyp mouse ObC-conditioned media on ObC calcification, we found that exposure to Cat D inhibited ObC (45)Ca incorporation and that inhibition of Cat D abolished the inhibitory effect of Hyp mouse-conditioned media on ObC calcification. In conclusion, results from our present study showed that Hyp mouse ObCs release a greater amount of Cat D, which may contribute to the inhibitory effect of Hyp mouse ObC-conditioned media on ObC mineralization.  相似文献   

15.
Lv H  Fu S  Wu G  Yan F 《Tissue & cell》2011,43(2):125-130
The mutation of phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) can lead to human X-linked hypophosphatemic rickets which displays hypo-mineralization in bone and dentin. To study its possible roles in teeth, PHEX antibody was injected into pregnant mice on E15 to explore its roles on the formation of enamel and dentin. Mallory trichrome staining results showed that arrangements of ameloblasts and odontoblasts were irregular after PHEX antibody treatment. Differentiation of odontoblasts and the formation of dentin were inhibited. Spatiotemporal distribution of PHEX protein was observed in various stages of tooth germ. Immunohistochemical results showed positive PHEX signals appeared in the inner enamel epithelium on E16 and became stronger on E18. Ameloblasts and odontoblasts showed much higher PHEX expression on P1 and P3. Expression of PHEX in odontoblasts decreased accordingly. However, enamel formation was only slightly affected. The findings proved that a decrease in PHEX expression could suppress dentin formation.  相似文献   

16.
The unique hereditary enamel defect clearly related to the disturbance of one enamel matrix protein is X‐linked amelogenesis imperfecta (AI), in which several mutations of amelogenin gene have been identified. The clinical phenotype of many of these subjects shows similarities with enamel defects related to rickets. Therefore, we hypothesized that rachitic dental dysplasia is related to disturbances in the amelogenin pathway. In order to test this hypothesis, combined qualitative and quantitative studies in experimental vitamin D‐deficient (−D) rat model systems were performed. First, Western blot analysis of microdissected enamel matrix (secretion and maturation stages) showed no clear evidence of dysregulation of amelogenin protein processing in −D rats as compared with the controls. Second, the ultrastructural investigation permitted identification of the internal tissular defect of rachitic enamel, the irregular absence of intraprismatic enamel observed in −D animals, suggesting a possible link between prism morphogenesis and vitamin D. In addition, the steady‐state levels of amelogenin mRNAs measured in microdissected dental cells was decreased in −D rats and up‐regulated by an unique injection of 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3). The present study shows evidences that amelogenin expression is regulated by vitamin D. This is the first study of an hormonal regulation of tooth‐specific genes. J. Cell. Biochem. 76:194–205, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
A new panel of steroidal cationic lipids has been synthesized for gene delivery. Using commercially available vitamin D2 (calciferol) or vitamin D3 (cholecalciferol) as hydrophobic motifs and a variety of cationic head groups as binding sites for negatively charged phosphate groups in DNA, we demonstrated that the transfection activity of the synthetic vitamin D-based cationic lipids 1d, 2d formulated with dioleoylphosphatidylethanolamine (DOPE) as a co-lipid is comparable to that of 3-(-[N-N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol). These synthetic lipids are effective in transfecting a variety of cell lines. These results suggest that vitamin D-based cationic lipids are useful transfection reagents for in vitro gene transfer studies.  相似文献   

20.
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号