首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应   总被引:11,自引:0,他引:11  
丁红  张智猛  戴良香  宋文武  康涛  慈敦伟 《生态学报》2013,33(17):5169-5176
为明确不同抗旱性花生品种的根系形态发育特征,探讨其根系形态发育特征对不同土壤水分状况的响应机制,在防雨棚旱池内进行土柱栽培试验,研究抗旱型品种“花育22号”、“唐科8号”和干旱敏感型品种“花育23号”3个不同抗旱性花生品种根系形态发育特征及其对干旱胁迫的响应.结果表明:抗旱型品种根系较发达,具有较大的根系生物量、总根长、总根系表面积.干旱胁迫使抗旱型品种根系总表面积和体积增加,而干旱敏感型品种则相反.干旱胁迫显著增加抗旱型品种“花育22号”20 cm以下土层内根长密度分布比例及根系表面积和体积,但“唐科8号”相应根系性状仅在20-40 cm土层内增加;干旱胁迫使干旱敏感型品种“花育23号”40 cm以下土层内各根系性状升高,但未达显著水平且其深层土壤内各根系性状增加幅度小于“花育22号”.花生根系总长、总表面积及0-20 cm土层内根系性状与产量间呈显著或极显著正相关.土壤水分亏缺条件下,花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性,优化空间分布构型,以调节植株对水分的利用.  相似文献   

2.
Two rice varieties PR-115 and Super-7 were imposed to water stress and different physiological traits were monitored to evaluate the performance of these varieties under drought. Under water stress condition although the relative water content, osmotic potential, chlorophyll content, photosynthesis rate, carbon discrimination and biomass decreased in both the varieties however, the reduction was more pronounced in Super-7 variety. Oryzanol a trans-ester of ferulic acid functions as antioxidant and it increased along with total phenolic and anthocyanin content in both the varieties under drought stress. However, gallic acid, 4 hydroxy benzoic acid, syringic acid and chlorogenic acid showed differential pattern in both of the varieties under water limiting conditions. Under drought, grain yield was penalized by 17 and 54% in PR-115 and Super-7 varieties, respectively in comparison to watered plants. Super-7 variety showed pronounced electrolyte leakage and MDA enhancement under water stress condition. High non photochemical quenching and reduction in Y(NO) and Y(II) indicated balanced energy management in tolerant PR-115 variety. The studies showed that PR-115 is a drought tolerant variety while Super-7 is drought sensitive in nature.  相似文献   

3.
干旱胁迫对花生根系生长发育和生理特性的影响   总被引:2,自引:0,他引:2  
以花育17号和唐科8号两个花生品种为试验材料,在防雨棚栽培池内进行土柱栽培试验,研究了中度干旱胁迫和正常供水处理下花生生育后期根系形态发育特征和生理特性.结果表明: 唐科8号具有较发达的根系及较高的产量和抗旱系数,花育17号根系对干旱胁迫的适应性小于唐科8号.两品种根长密度、根系生物量均主要分布于0~40 cm土层中,但同一土层内两品种根系性状存在差异.与正常供水处理相比,干旱胁迫处理使花育17号各生育期总根长、根系总表面积和总体积均降低,而唐科8号除花针期显著降低外,其余生育期均明显升高;干旱胁迫增加了两品种20~40 cm土层内根系生物量、根系表面积和体积,而降低了40 cm以下土层内各根系性状;干旱胁迫处理使两品种饱果期40 cm以下土层内根系活力降低,且花育17号降低幅度高于唐科8号.干旱胁迫下两品种生育后期根系发育和生理特性的差异表明其根系在干旱胁迫下对水分吸收和利用存在差异.  相似文献   

4.
Two upland rice varieties (IRAT109, IAPAR9) and one lowland rice variety (Zhenshan 97B) were planted in summer and treated with both normal (full water) and drought stress in the reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every 1.0-1.5 h over 24 h on sunny days. Both PWP and LWP of upland varieties started to decrease later, maintained a higher level and recovered more quickly than that of the lowland variety. The results show that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and eight traits related to plant growth and grain yield formation. PWP seemed to be more effective for distinguishing the upland rice varieties with different drought-tolerant ability. Differences in PWP and LWP between upland and lowland rice varieties were also observed at noon even under normal water conditions, implying the incorporation of the drought-tolerant mechanism to improve the photosynthesis and yield of traditional paddy rice.  相似文献   

5.
Two upland rice varieties (IRAT109, IAPAR9) and one lowland rice variety (Zhenshan 97B) were planted in summer and treated with both normal (full water) and drought stress in the reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every 1.0-1.5 h over 24 h on sunny days. Both PWP and LWP of upland varieties started to decrease later, maintained a higher level and recovered more quickly than that of the lowland variety. The results show that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and eight traits related to plant growth and grain yield formation. PWP seemed to be more effective for distinguishing the upland rice varieties with different drought-tolerant ability. Differences in PWP and LWP between upland and lowland rice varieties were also observed at noon even under normal water conditions, implying the incorporation of the drought-tolerant mechanism to improve the photosynthesis and yield of traditional paddy rice.  相似文献   

6.
The yield of 24 commercial varieties and accessions of common bean (Phaseolus vulgaris) has been determined at different sites in Chile and Bolivia. Statistical analysis was performed in order to characterize whether a particular variety was more or less stable in yield under different environmental conditions. Amongst these, two varieties have been identified for more detailed study: one variety has a higher than average yield under unstressed conditions but is strongly affected by stress, and another has a reduced yield under unstressed conditions but is less affected by stress. The contrasting rate of abscission of the reproductive organs under drought stress was clearly consistent with these differences. The more tolerant genotype shows a great deal of plasticity at the biochemical and cellular level when exposed to drought stress, in terms of stomatal conductance, photosynthetic rate, abscisic acid synthesis, and resistance to photoinhibition. By contrast, the former lacks such plasticity, but shows an enhanced tendency for a morphological response, the movement of leaves, which appears to be its principal response to drought stress.  相似文献   

7.
Soybean is an important legume food crop, and its seeds are rich in nutrients, providing humans and animals with edible oil and protein feed. However, soybean is sensitive to water requirements, and drought is an important factor limiting soybean yield and quality. This study used Heinong 84 (drought resistant variety) and Hefeng 46 (intermediate variety) as tested varieties planted in chernozem, albic, and black soils. The effects of drought stress on the activities of key enzymes in carbon metabolism and photosynthetic characteristics of soybean were studied during the flowering stage, most sensitive to water. (1) The activities of SS-1, 6PGDH, and G6PDH enzymes in soybean leaves first increased and then decreased under drought stress. The enzyme activity was the highest under moderate drought stress and weakest in the blank group. (2) Drought stress increased Phi2, PhiNO, and Fm in soybean leaves and reached the highest value under severe drought; with the increase in drought stress, PhiNPQ and Fv/Fm of soybean leaves gradually decreased, reaching the lowest under severe drought. (3) With the increase in drought stress, F0 and Fs of soybean leaves showed a single peak curve, and the maximum was at moderate drought. (4) Correlation analysis showed that F0 was greatly affected by varieties and soil types; Fs, F0, and Fm soil varieties had a great influence, and chlorophyll fluorescence parameters were affected differently under drought stress with different drought degrees. (5) Drought stress changed the agronomic traits and yield of soybean. With the increase of drought degree, plant height, node number of main stem, effective pod number, 100-seed weight and total yield decreased continuously. (6) Drought stress affected the dry matter accumulation of soybean. With the increase of drought degree, the dry matter accumulation gradually decreased. Among them, the leaf was most seriously affected by drought, and SD decreased by about 55% compared with CK. Under the condition of black soil, the dry matter accumulation of soybean was least affected by drought.  相似文献   

8.
在温室盆栽条件下,以2个不同蛋白质含量的冬小麦(Triticum aestivum L.)品种皖麦38和扬麦9为材料,研究了花后第4天开始的土壤干旱(SRWC=45%~50%)和渍水对籽粒蛋白质和淀粉积累关键调控酶活性的影响。小麦叶片和籽粒的测定结果均表明,小麦源库器官中籽粒蛋白质和淀粉积累的关键调控酶活性变化趋势在2个品种间基本一致。与对照(SRWC=75%~80%)相比,干旱和渍水均明显降低了花后旗叶中蔗糖含量和磷酸蔗糖合成酶(SPS)活性,而氨基酸含量和谷氨酰胺合成酶(GS)活性略有下降。干旱和渍水均降低了籽粒库蔗糖合成酶(SS)和结合态淀粉合成酶(GBSS)活性,可溶性淀粉合成酶(SSS)活性降低尤甚。其中干旱处理下SS的下降比渍水更为明显。与对照相比,渍水明显降低了籽粒谷丙转氨酶(GPT)和GS活性,而干旱的影响较小。相关性分析结果表明籽粒淀粉产量和含量与SPS,SSS和GBSS活性的关系比与SS活性的关系更为密切,籽粒蛋白质产量和含量与叶中GS和籽粒中GPT活性的关系比与籽粒中GS关系活性更为密切。这些结果表明小麦源库器官中调控籽粒蛋白质和淀粉积累的关键酶活性变化是花后不同水分状况影响籽粒淀粉和蛋白质特性的重要因素。  相似文献   

9.
A drought event can cause yield loss or entire crops to fail. In order to study the effects of continuous drought on physiological characteristics, yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum L.), the variety “Zhoumai 22” was grown in controlled water conditions of the pot-planted winter wheat under a mobile rainout shelter. Foot planting and safe wintering were used to evaluate, winter wheat under different drought conditions, including light, moderate and severe drought at the jointing, heading, and filling stages. The soil water content was controlled at 60–70%, 50–60%, or 40–50% of field capacity. Experimental trials included 3 pre-anthesis drought hardening, 3 three-stage continuous drought, and 1 test control conditions. Under drought stress conditions, winter wheat leaf water potential, soil plant analysis development (SPAD), photosynthesis parameters, and yield declined due to pre-anthesis drought hardening. And the degree of decline: continuous drought > pre-anthesis drought hardening. Changes in the post-anthesis photosynthetic capacity of winter wheat were mainly related to the pre-anthesis drought level, rather than post-anthesis rehydration. The threshold of non-stomata limiting factors caused by photosynthesis at the filling stage is 40–50%FC, while comprehensive yield and WUE affected, the yield in severe drought treatments was the most significant, B3C3 and B3C3G3 decreased by 55.68% and 55.88%, respectively. Pre-anthesis drought was the main reason for the decreased crop yield. Thus, severe drought should be avoided during planting, while pre-anthesis light drought is a suitable choice for water-saving and crop production, as proper pre-anthesis drought hardening (60–70% FC) is feasible and effective.  相似文献   

10.
开花期土壤短期干旱和复水对大豆光合作用和产量的影响   总被引:4,自引:0,他引:4  
王磊  张彤  丁圣彦 《植物学报》2009,44(2):185-190
以大豆(Glycine max)为材料, 研究开花期土壤水分变动对叶片光合生理以及产量形成的影响, 以期为大豆的节水栽培和水分高效利用提供理论依据。研究发现, 大豆叶片气孔导度(Gs)对土壤水分的匮缺更加敏感。干旱胁迫降低了叶片的净光合速率(Pn), 但复水后, 叶片水势和净光合速率等在实验过程中都可以得到迅速恢复, 并且蒸腾速率(Tr)、气孔导度和胞间CO2浓度(Ci)在复水后的第3 天与对照相比显著提高, 表现出一定的超补偿效应。研究发现, 在开花期即使短期的土壤干旱, 也会对大豆后期的生物量及其分配产生较大的影响, 开花期干旱和复水, 显著降低了大豆叶片和茎的生物量, 使根茎比提高16.7% (P<0.05), 收获指数增加26.3%(P<0.05)。  相似文献   

11.
低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响   总被引:15,自引:0,他引:15  
乔振江  蔡昆争  骆世明 《生态学报》2011,31(19):5578-5587
土壤缺磷和季节性干旱已经成为南方酸性红壤地区大豆生产的主要限制因素之一。选取2个大豆品种巴西10号(磷高效)和本地2号(磷低效),研究其在不同磷素(0,15, 30 mg/kg P)和水分处理(分别在开花期和结荚期进行干旱胁迫)下的反应,从植株生物量、叶绿素含量、磷效率指标等方面研究不同基因型大豆对水磷耦合胁迫的适应机制。研究结果表明,随着土壤磷素水平的增加,两个品种的生物量和叶片叶绿素含量显著增加,根冠比则显著下降。在同一磷素水平处理下,干旱胁迫则导致较高的根冠比,对叶片叶绿素含量影响不大,两个品种表现一致。两个基因型大豆受到干旱胁迫后,其产量均显著低于正常水分处理。中等施磷能显著提高两个大豆品种的产量,但高磷处理对产量的增加幅度有限,甚至高磷处理还造成本地2号减产。巴西10号的产量随土壤中磷素的增加而增加,而本地2号的产量则为中磷>高磷>低磷,不管是磷处理还是水分处理,巴西10号的产量均高于本地2号。无论是花期干旱还是结荚期干旱,巴西10号和本地2号的根磷效率比、磷吸收效率及磷转移效率均随土壤磷浓度的增加而增加,磷利用效率则降低。总体上来讲,巴西10号的磷吸收效率和利用效率高于本地2号,而根磷效率比、磷转移效率则小于本地2号。  相似文献   

12.
为探明不同抗旱性棉花品种的根系生理特性对干旱的响应及其与生物量的关系,以不耐旱性品种‘新陆早17号'(L17)和耐旱性品种‘新陆早22号'(L22)为试材,在土柱栽培条件下设常规灌溉(CK)、轻度干旱(W1)和中度干旱(W2)处理,研究干旱胁迫对不同耐旱性棉花品种根系活力、保护酶活性及解剖结构(导管直径、数量)和生物量的影响。结果表明:干旱胁迫下两棉花品种根系可溶性蛋白(SP)含量、根系活力(RV)、木栓层数、根茎导管数量、导管直径显著降低,根系丙二醛(MDA)含量及保护性酶活性显著增加,进而导致地上部干物质量显著降低。与L17相比,L22的SP含量、0~40 cm和80~120 cm土层RV、木栓层数、根茎导管数量、导管直径以及地上部干物质量均显著增加,尤其W2条件下L22的RV降幅比L17低26.2%,过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性和皮层厚度分别比L17高43.6%、6.9%、25.4%、19.9%,且差异均达到显著水平。干物质量与RV、SOD、POD、木栓层数、导管直径和个数之间均呈显著正相关。因此,耐旱性强的棉花品种在干旱条件下通过保持较高的根系活性、木栓层数、导管直径和数量,进而促进地上部生物量积累,是其具有较高耐旱性的生理机制。  相似文献   

13.
采用de Wit替代系列实验研究了传统地方品种和尚头和现代品种定西-24在土壤水肥梯度下混播时的竞争结局以及竞争能力和单播产量之间的关系。在各个水肥处理条件下,混播时,虽然和尚头对定西-24的影响效应有所减弱,但是,和尚头对定西-24的竞争结局并没有发生改变:和尚头最终完全排除定西-24,成为竞争中的优胜者。在低水无肥和高水高肥条件下,定西-24的单播产量显著高于和尚头的单播产量,二者的竞争能力与其单播产量之间呈负相关;在低水低肥条件下,和尚头的单播产量与定西-24的单播产量几乎相等,二者的竞争能力与其单播产量之间没有特定的关系;在中水中肥条件下,和尚头的单播产量高于定西-24的单播产量,二者的竞争能力与其单播产量之间呈正相关,据此可以认为和尚头和定西-24混播时的竞争能力与其单播产量之间没有特定的关系。在低水无肥和高水高肥条件下,定西-24的单播地上生物量显著高于和尚头的单播地上生物量。在水分严重亏缺的条件下,和尚头的水分利用效率显著低于定西-24的水分利用效率;随着水分供给的改变,和尚头的水分利用效率得到了显著提高,然而当水分不再成为和尚头生长限制因子时,其水分利用效率降低,结果表明一定程度水分利用效率的提高有利于春小麦适应半干旱区的水分环境。  相似文献   

14.
15.
辣椒开花结果期对干旱胁迫的形态与生理响应   总被引:4,自引:0,他引:4  
谢小玉  马仲炼  白鹏  刘晓健 《生态学报》2014,34(13):3797-3805
在遮雨网室选用抗旱性较强的农城椒二号和抗旱性较弱的陕蔬2001,研究辣椒在轻度、中度和重度干旱胁迫下不同时间的生长、产量、渗透调节物质、保护酶活性的变化规律及其生理调节机制。结果表明:随干旱胁迫时间的延长,辣椒的株高、分枝数、叶面积、单位面积产量、叶绿素含量和叶片相对含水量的抗旱系数呈下降趋势,下降速率与干旱胁迫程度呈正相关,与品种的抗旱性呈负相关;脯氨酸、丙二醛含量和细胞膜透性相对值随干旱胁迫时间的延长呈上升趋势;POD、SOD、CAT活性和可溶性蛋白相对值随着干旱胁迫时间的延长先升高后下降,抗旱性强的材料增加幅度低于抗旱性弱的材料;可溶性糖含量的相对值在轻度和中度干旱胁迫下呈上升趋势,在重度干旱胁迫下呈上升—下降趋势,且抗旱性强的材料上升速度大于抗旱性弱的材料。相关分析表明,干旱胁迫下,产量与株高、分枝数、叶片叶绿素含量、叶面积、叶片相对含水量抗旱系数呈显著正相关;与细胞膜透性、CAT活性和可溶性蛋白含量抗旱系数呈显著负相关。主成分分析表明,用作辣椒抗旱性鉴定的主要指标是单株产量、株高、叶面积、分枝数、可溶性蛋白、可溶性糖、MDA、叶绿素含量和细胞膜透性及叶片相对含水量,叶片POD、SOD、CAT活性、脯氨酸含量可做为辣椒抗旱性鉴定的次要鉴选指标。  相似文献   

16.
Root sugar accumulation was studied in two grapevine varieties contrasting in tolerance to water stress. During a 10‐day water withholding treatment, the drought‐tolerant variety, Grenache, sustained less negative predawn and midday leaf water potentials as well as root water potential compared with the sensitive variety, Semillon. Grenache vines also maintained lower stomatal conductance and transpiration than Semillon vines throughout the drying period. In both varieties there was accumulation of sucrose in the roots and concentrations were inversely correlated to leaf and root water status. In both Grenache and Semillon, elevated root osmolality was associated with decreased soil moisture indicating that sugar accumulation may play a role in osmotic protection. Petiole xylem sap abscisic acid (ABA) concentrations increased with water deficit in both varieties and were highest for vines with the most negative root and predawn leaf water potentials. Furthermore, root sucrose concentrations were positively correlated with leaf xylem sap ABA concentrations, indicative of integration between carbohydrate metabolism and the ABA signalling system. Similar root sugar accumulation patterns between the two varieties, however, demonstrate that other factors are likely influencing the ability of the drought‐tolerant variety to remain hydrated.  相似文献   

17.
A drought event can cause entire crops to fail or yield loss. In order to study the effects of continuous drought on photosynthetic characteristics, yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum L.), the winter wheat variety “Aikang 58” was selected as test material with controlling the water of the pot-planted winter wheat under a mobile rainout shelter. Based on foot planting and safe wintering, winter wheat was evaluated under different drought conditions, including light, moderate and severe drought at the jointing (B), heading (C), and filling (G) stages. The soil water content was controlled in a range of 60% to 70%, 50% to 60%, and 40% to 50% of the field capacity, respectively. In the experiment, there were 9 single-stage droughts, 3 three-stage droughts, and 1 test control (totaling 13 trials). The results are as follows: Under a single-stage drought, the change of net photosynthetic rate (Pn) and stomatal conductance (Gs) have similar trends, and they both decrease significantly with the severity of the drought. Under three-stage continuous droughts, the change curve of Gs shows a constant downward trend; the change curve of Pn showed a “valley shape,” and the minimum value of Pn appeared at the heading stage. All droughts will reduce the yield of winter wheat. Under the three-stage continuous drought conditions, except for light drought, moderate drought and severe drought will cause significant yield reduction, mainly due to lack of water at the jointing and heading stages. Continuous drought will reduce the WUE, and the difference will reach a significant level under moderate and severe drought. The present results suggested that when water resources are scarce, it is a better irrigation model to save water and achieve high grain yield by applying appropriate water stress (60%–70% FC) during the critical growth period of winter wheat.  相似文献   

18.
19.
孙婴婴  刘立生  张岁岐 《生态学报》2014,34(16):4488-4498
通过3个不同倍性冬小麦材料(两倍体栽培一粒、四倍体栽培两粒、六倍体现代品种长武134),在不同水分条件下进行密度实验,研究了不同材料的株高、生物量累积和分蘖动态的变化,以及产量对密度变化的反应。结果表明随着群体的增大,不同倍性材料个体间竞争明显加剧,相互抑制作用增强,种群内部个体大小等级差异增大;在不同群体下各倍性材料的个体生长存在差异,表现为四倍体栽培两粒竞争能力两倍体栽培一粒六倍体现代品种长武134,且长武134受种群大小影响最为显著,但长武134产量累积的投入比例最高,产量最高,低竞争能力的个体更适合生产上的需求,是群体高产的基础。研究结果为旱地小麦的高产栽培和育种提供了理论基础。  相似文献   

20.
改变土壤根系的分布以汲取深层土壤水分的能力是植物避免干旱的主要策略。山黧豆是一种抗逆性强的豆类作物,该研究通过起垄条播控制性沟灌的方式,设置传统灌溉(FI)、交替灌溉(PRD,灌水量减少50%)和不灌溉(NI)3种处理模式,探索不同灌溉模式对播种后不同时期山黧豆土壤水分、根系分布、叶片气体交换、水分利用效率和籽粒产量的影响。结果表明:(1)在FI、PRD和NI处理下,山黧豆的根系分别有89.8%、86.9%和84.9%生长在0~20 cm的表层土壤中;干旱胁迫使PRD和NI处理下深层土壤中根系的比例提高至13.05%和15.07%。(2)在整个生育期内,土壤干旱显著降低了山黧豆叶片的净光合速率、蒸腾速率和气孔导度;在种植后60 d时,PRD和NI处理下叶片的瞬时水分利用效率分别较FI处理显著提高了21.4%和14.9%。(3)干旱胁迫显著降低了山黧豆植株高度、第一豆荚高、平均结荚数和豆粒数以及地上部和根系的干重,但显著增加了根冠比;PRD处理对豆荚长度、豆荚重和每荚豆粒重没有显著影响;PRD和NI处理下山黧豆平均籽粒产量分别比FI处理显著降低了53%和63%。研究发现,在干旱胁迫条件下,山黧豆能够通过提高深层土壤中根系的比例、更多吸收深层土壤水分、显著增加根冠比以及显著提高生殖生长期叶片的瞬时水分利用效率,减轻干旱胁迫对自身生长的影响。该研究结果可为山黧豆在旱区推广种植提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号