首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Neurobehavioural impairment on the first night shift is often greater than on subsequent night shifts due to extended wakefulness. The aim of the study was to determine whether a 1-h afternoon nap prior to the first night shift is sufficient to produce neurobehavioural performance at levels comparable to the second night shift. Twelve male volunteers (mean age 22.9 years) participated in a laboratory protocol that simulated two 12-h night shifts. A nap preceded the first shift and a 7-h daytime sleep was scheduled between shifts. Neurobehavioural performance and subjective sleepiness measured across each night did not significantly differ between first and second shifts.  相似文献   

2.
The objective of this study was to examine age related effects of shiftwork albeit difficult to tease apart the natural effects of aging, and lifestyle or behaviour, or job done, over time and the shifts a person works. This is an issue of concern because the numbers of shiftworkers over 45 are increasing. Participants were 306 police officers who had worked a new rota for approximately 6 months. Three age groups were compared (1 = 20-32.9, 2 = 33-39.9, 3 = 40+) using a range of shiftwork-related measures and multivariate analysis of covariance (controlling for shiftwork experience and other individual differences). Younger officers tended to report significantly better attitudes towards their shiftwork, better adjustment to night-bound shifts, greater job satisfaction and organisational commitment, lower fatigue and longer sleep durations. Older shiftworkers reported significantly higher morningness and lower sleep need than the younger officers. This concurred with existing research that implicates such variables in the mechanism(s) involved in age-related tolerance to shiftwork. It was also evident that the older group tended to resort to greater caffeine intake on all shifts. The findings offer tentative support for the position that age can be linked to depleted shiftwork tolerance but the issue of establishing the relative impacts of aging, lifestyle, behaviour, work type and the rota worked remains to be a challenge.  相似文献   

3.
Previous research points to some inappropriate nutritional habits among nurses working night shifts. However, the knowledge of specific nutritional components of their diet has been limited. In the present study, we aimed to investigate the association between rotating night shifts of nurses and midwives and their usual dietary intake of energy and nutrients.

A cross-sectional study was conducted among 522 Polish nurses and midwives: 251 working rotating night shifts (i.e. working night shift followed by a day off on a subsequent day) and 271 day workers. Polish adaptation of the Food Frequency Questionnaire, regarding 151 food items, was used to assess the usual dietary energy and nutrient intake. Data on occupational history and potential confounders were collected via face-to-face interviews. Body weight, height, waist and hip circumference were measured. Linear regression models: univariate (crude) and multivariate (adjusted) were run, with the nutrient intake as dependent variables, night work characteristics, and important confounders.

Among nurses and midwives working rotating night shifts, a significantly higher adjusted mean intake was found for the total energy (2005 kcal vs 1850 kcal) and total fatty acids (77.9 g vs 70.4 g) when compared to day workers, as well as for cholesterol (277 mg vs 258 mg), carbohydrates (266 g vs 244 g) and sucrose (55.8 g vs 48.6 g). Night shift work duration was inversely related to the consumption of calcium, phosphorus, vitamin A, vitamin C and % energy from proteins. The higher energy consumption may contribute to increase risk of overweight and obesity among nurses working night shifts.  相似文献   


4.
《Chronobiology international》2012,29(12):1613-1625
ABSTRACT

Understanding shift workers dietary intake patterns may inform interventions targeted at lowering chronic disease risk. This study examined the temporal distribution of food intake as shift workers rotate between night shifts, day shift and/or days off to identify differences in energy intake, eating frequency, and adherence to dietary guidelines by shift type (night shift vs. day). Night shift (NS) workers completed a four-day food diary that included a minimum of two night shifts and one-day shift (DS)/day off (DO), recording all food, beverages and time of consumption. Comparisons were between shift types, using ANOVA for continuous data and generalized estimating equations for count data, data reported as mean (SE). When comparing NS and DSDO, there were no differences in energy intake (24 h) (8853 (702) vs. 9041 (605) kJ, n = 22) or adherence to dietary guidelines. There was no difference between the number of eating occasions on NS and DSDO (5.6(0.3) vs 5.1(0.6) occasions) but less energy per eating occasion at night (1661(125) vs 1933(159) kJ). When working NS compared with DSDO there was higher total sugar (%E, 19.1(2.0) vs 15.0(2.4)) and lower saturated fat (%E, 13.8(1.2) vs 15.7(1.3)). Further, DSDO were characterized by a pattern of three main meals and a prolonged fasting period. It is important to determine if reducing eating occasions and providing opportunities for fasting improves metabolic health.  相似文献   

5.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score >?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.  相似文献   

6.
The relation of age to the adjustment of the circadian rhythms of oral temperature (T0) and sleepiness (S) in shift work was studied. 145 healthy female nurses underwent detailed laboratory and field measurements. Self-rated sleepiness, and oral temperature measured with a special extended-scale mercury thermometer, were recorded at 2 hr intervals during a morning (M) and 2 consecutive night (N) shifts. Sleeping times were registered during the same days. The results were analyzed separately in the age-groups of 22-29, 30-39 and 40-49-year-old subjects. From the morning shift to the second night shift day, the oral temperature and sleepiness acrophases shifted significantly (p less than 0.001) forward in all age groups. The amplitude decreased in the youngest and in the 30-39-year old age groups but not in the oldest age group. During the second night shift day, the acrophases and amplitudes of oral temperature rhythms were significantly different (P less than 0.05) between the groups, but there were no significant differences by age in the change of the circadian rhythms from morning to the second night shift days. The results thus fail to corroborate that physiological adjustment to night work would be influenced by age.  相似文献   

7.
The present study aimed to examine the working conditions of shift workers in a multinational enterprise in Thailand and to identify practical support measures for improvements. A multinational, glass-manufacturing factory employing 1,500 workers was selected as the research site. Three shift systems in three teams were adopted. A direct observation study and a fatigue feeling monitoring study were carried out to compare the differences between different shifts. A 10-day time-budget study was conducted for 30 shift workers to know their work and sleep patterns. The direct observation study identified safety and health risks during the night work periods. The risks included insufficient lighting, height gaps on the floor, excessive exposure to heat, inappropriate workstations, and sleepiness and fatigue feelings among shift workers. Working consecutive double shifts and overtime work was often seen. An advisory meeting was held based on the study findings to assist managers and workers in improving their working conditions. A follow-up visit six months later confirmed that the glass factory implemented several improvements to help night and shift workers. It was concluded that the direct observation methods associated with the time-budget study were helpful for identifying practical action points and strengthening workplace initiatives.  相似文献   

8.
Extended nap opportunities have been effective in maintaining alertness in the context of extended night shifts (+12?h). However, there is limited evidence of their efficacy during 8-h shifts. Thus, this study explored the effects of extended naps on cognitive, physiological and perceptual responses during four simulated, 8-h night shifts. In a laboratory setting, 32 participants were allocated to one of three conditions. All participants completed four consecutive, 8-h night shifts, with the arrangements differing by condition. The fixed night condition worked from 22h00 to 06h00, while the nap early group worked from 20h00 to 08h00 and napped between 00h00 and 03h20. The nap late group worked from 00h00 to 12h00 and napped between 04h00 and 07h20. Nap length was limited to 3 hours and 20 minutes. Participants performed a simple beading task during each shift, while also completing six to eight test batteries roughly every 2?h. During each shift, six test batteries were completed, in which the following measures were taken. Performance indicators included beading output, eye accommodation time, choice reaction time, visual vigilance, simple reaction time, processing speed and object recognition, working memory, motor response time and tracking performance. Physiological measures included heart rate and tympanic temperature, whereas subjective sleepiness and reported sleep length and quality while outside the laboratory constituted the self reported measures. Both naps reduced subjective sleepiness but did not alter the circadian and homeostatic-related changes in cognitive and physiological measures, relative to the fixed night condition. Additionally, there was evidence of sleep inertia following each nap, which resulted in transient reductions in certain perceptual cognitive performance measures. The present study suggested that there were some benefits associated with including an extended nap during 8-h night shifts. However, the effects of sleep inertia need to be effectively managed to ensure that post-nap alertness and performance is maintained.  相似文献   

9.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1–9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score ?>?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(10):1169-1178
We compared two “3?×?8” shift rotas with backward rotation and quick return (morning and night shift in the same day) in a 5- or 6-day shift cycle, and a “2?×?12” shift rota with forward rotation in a 5-d shift cycle. A total of 294 nurses (72.6% women, mean age 33.8) were examined in a survey on work-related stress, including the Standard Shiftwork Index. Ten nurses per each shift roster recorded their activity and rest periods by actigraphy, rated sleepiness and sleep quality, and collected salivary cortisol throughout the whole shift cycle. Nurses engaged in the “2?×?12” rota showed lower levels of sleep disturbances and, according to actigraphy, sleep duration was more balanced and less fragmented than in the “3?×?8” rosters. The counter-clockwise shift rotation and quick return of “3?×?8” schedules reduce possibility of sleep and recovery. The insertion of a morning shift before the day with quick return increases night sleep by about 1?h. Nurses who take a nap during the night shift require 40% less sleep in the morning after. The “2?×?12” clockwise roster, in spite of 50% increased length of shift, allows a better recovery and more satisfying leisure times, thanks to longer intervals between work periods. Sleepiness increased more during the night than day shifts in all rosters, but without significant difference between 8-h and 12-h rosters. However, the significantly higher level at the start of the night shift in the “3?×?8” rotas points out that the fast backward rotation with quick return puts the subjects in less efficient operational conditions. Some personal characteristics, such as morningness, lability to overcome drowsiness, flexibility of sleeping habits and age were significantly associated to sleep disturbances in nurses engaged in the “3?×?8” rotas, but not in the “2?×?12” schedule.  相似文献   

11.
Numerous cross-sectional studies report high prevalence rates of sleepiness and insomnia in shift workers, but few longitudinal studies exist. We investigated trajectories of sleepiness and insomnia symptoms in a sample of Norwegian nurses across four measurements, spanning a total of four years (sleepiness) and five years (insomnia). The participants completed the Epworth Sleepiness Scale and the Bergen Insomnia Scale at each measurement instance. Latent growth curve models were used to analyse the data. Separate models examined night work (night work, entering and leaving night work) and rotational work (rotational work, entering and leaving rotational work) as predictors for trajectories of sleepiness and insomnia symptoms, respectively. Baseline values of sleepiness and insomnia were higher among rotational shift workers than among workers with fixed shifts (day or night). The results showed that night work throughout the period and entering night work during the period were not associated with different trajectories of sleepiness or insomnia symptoms, compared to not having night work. The same results were found for rotational work and entering rotational work, compared to not having rotational work. Leaving night work and leaving rotational work were associated with a decrease in sleepiness and insomnia symptoms, compared to staying in such work.  相似文献   

12.
The effects of permanent shift work on entrainment and sleepiness are examined using a mathematical model that combines a model of sleep-wake switch in the brain with a model of the human circadian pacemaker entrained by light and nonphotic inputs. The model is applied to 8-hour permanent shift schedules to understand the basic mechanisms underlying changes of entrainment and sleepiness. Average sleepiness is shown to increase during the first days on the night and evening schedules, that is, shift start times between 0000 to 0700 h and 1500 to 2200 h, respectively. After the initial increase, sleepiness decreases and stabilizes via circadian re-entrainment to the cues provided by the shifts. The increase in sleepiness until entrainment is achieved is strongly correlated with the phase difference between a circadian oscillator entrained to the ambient light and one entrained to the shift schedule. The higher this phase difference, the larger the initial increase in sleepiness. When entrainment is achieved, sleepiness stabilizes and is the same for different shift onsets within the night or evening schedules. The simulations reveal the presence of a critical shift onset around 2300 h that separates schedules, leading to phase advance (night shifts) and phase delay (evening shifts) of the circadian pacemaker. Shifts starting around this time take longest to entrain and are expected to be the worst for long-term sleepiness and well-being of the workers. Surprisingly, we have found that the circadian pacemaker entrains faster to night schedules than to evening ones. This is explained by the longer photoperiod on night schedules compared to evening. In practice, this phenomenon is difficult to see due to days off on which workers switch to free sleep-wake activity. With weekends, the model predicts that entrainment is never achieved on evening and night schedules unless the workers follow the same sleep routine during weekends as during work days. Overall, the model supports experimental observations, providing new insights into the mechanisms and allowing the examination of conditions that are not accessible experimentally.  相似文献   

13.
A small oxygen factory in Cantho Province located in the Mekong Delta Area in the southern part of Vietnam was studied to provide practical support measures to improve night and shift work. A direct observation study and a fatigue symptom survey during the work were conducted. The factory applied discontinuous two-shift systems in two teams. Depending on customers' demands, they frequently prolonged oxygen production until midnight. The study results showed work-related risks such as carrying heavy oxygen cylinders, workers' sleepiness during the night work, and increased fatigue feelings among production operators. Based on the study results, better strategies for night and shift work schedules such as regular work hours minimizing overtime and night work were discussed with the managers and workers. A follow-up visit three months later confirmed many improvements undertaken in the factory. Better work arrangements for night and shift workers were made including local lighting, resting corners, filling the height gaps on the work floors, and clear work instructions. Prolonged mid-night shift was stopped. It was concluded that local small enterprises in Vietnam have much potential to improve their conditions of shift and night work once practical support measures based on their local practice is given.  相似文献   

14.
ABSTRACT

Decline in cognitive functioning in the workplace is a major concern for health care systems. Understanding factors associated with nighttime functioning is imperative for instituting organizational risk management policies and developing personalized countermeasures. The present study aims to identify individual factors associated with cognitive functioning during the night shift of hospital nurses working on irregular rotating-shift schedules. Ninety-two female nurses were recruited from 17 wards in two general hospitals, using convenience sampling by clusters. Inclusion criteria were working at least 28 h a week (75% of full time) and one night shift per week. Exclusion criteria were pregnancy, diagnosed sleep disorders or medical conditions that may affect sleep and/or function. Cognitive performance was measured during the middle (03:00 h) and at the end (07:00 h) of the night shift using the Digit Symbol Substitution Task (DSST) and the Letter Cancellation Task (LCT) over two night shifts. Subjective sleepiness was assessed by the Karolinska Sleepiness Scale (KSS) at the same time points. All participants completed a sociodemographic questionnaire, the Munich ChronoType Questionnaire for Shift-Workers (MCTQShift) and the Pittsburgh Sleep Quality Index (PSQI). Sleep duration 24 h before the night shift and time awake since last sleep opportunity were monitored by actigraphy. Univariate repeated measures ANOVA found main effects for clock time (p<0.001), age (p<0.05), time awake (p<0.05) and sleepiness (p<0.01) for DSST correct responses; main effects for clock time (p<0.001) and sleepiness (p<0.001) for LCT capacity; and main effects for clock time (p<0.001) and age (p<0.01) for LCT omission errors. All factors remained significant in a mixed-model analysis for DSST. Cognitive performance among hospital nurses is low during the middle of the night shift and increases at the end of the shift; decreased functioning is associated with increased subjective sleepiness, older age and prolonged time awake. Identifying factors contributing to performance during the night shift may provide a basis for the development of risk management policies and preventative interventions.  相似文献   

15.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

16.
Human beings are accustomed to being active and awake during the day, and asleep and rest at night. Since we live in a society which is organised predominantly along daytime activity, therefore working in the night shift may deeply disrupt our social and family life. It is also a well-known fact that night shift causes fatigue and circadian disruption. The basic manifestation of fatigue and circadian rhythm has been linked to health and safety problems, involving decrements in psychophysical and physiological functions, plus subjective complaints. In this context quantitative relationships between shift work and circadian rhythm need to be assessed to explore suitable time schedule, and to minimise sleep depth and fatigue. There is also a great need to discuss circadian disruption, sleepiness and the increasing cost of work related illness among night workers. In this regard, some aspects of fatigue and circadian disruption caused from night shift work are revealed in this paper aiming to increase workers' health, safety and well being as well as productivity. Light/dark cycle and social stimuli issues acting on the circadian timing systems are also explored to solicit opinions and discussion on the controversy of night work. Suggestions are therefore likewise given to enhance workers' adaptation to night shift and synchronization process.  相似文献   

17.
《Chronobiology international》2012,29(12):1599-1612
ABSTRACT

Introduction: Epidemiological studies show that shift workers are at increased risk of cardiovascular diseases, metabolic dysfunction, diabetes, and obesity. Previous research has shown no difference in energy intake between night and day shifts only; however, it remains unclear whether other non-night shift patterns are different to night shift.

Objectives: We investigated whether energy intake of night-shift workers differed from other shift patterns using calorimetry, food diary or food recall over 24-hour periods.

Methods: A systematic review was conducted searching CINAHL, MEDLINE, Web of Science, Embase and PsycINFO databases for observational and interventional studies measuring energy intake in real or simulated shift work. Energy intake was extracted to compare night, day, afternoon/evening and rotating shift work cases.

Results: After duplicate removal, we screened 1057 abstracts and 68 full-text articles were assessed for eligibility of which 15 studies met the inclusion criteria. All studies were cross-sectional and case–control designs in shift workers. Risk of bias assessment showed a low to moderate risk of bias in the majority of studies. There was no difference in energy intake between night-shift work and non-night shift patterns including early morning, day and afternoon/evening shifts. Night-shift workers did not favor particular macronutrients in comparison to other shift schedules.

Conclusions: Energy and macronutrient intake were not detectably different in night shift compared to other shift patterns. Shift work patterns were heterogeneous which likely impacted on dietary assessment timings and computation of 24-h energy intake. Future studies should examine shift schedules with precise circadian timing of food consumption to determine if differences exist in energy and macronutrient intake between different shift patterns.  相似文献   

18.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

19.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

20.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号