首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The fluorouridine insensitive 1 (fur1) locus in Arabidopsis thaliana (L.) Heynh. has previously been identified in a screen for growth resistance towards the toxic compound fluorouridine. Mutation of this locus by ethylmethane sulfonate (EMS) allows mutants to grow on this uridine analogue. We identified that the A. thaliana equilibrative nucleoside transporter (AtENT3) was encoded by the fur1 locus. T-DNA insertional mutant plants for AtENT3 resemble the fur1 mutant phenotype: i.e. they grow on fluorouridine, and seedlings as well as leaf discs exhibit a markedly reduced uptake capacity for uridine and cytidine, but a less pronounced reduced uptake for adenosine and guanosine. These results indicate that AtENT3 is an important pyrimidine nucleoside transporter in Arabidopsis. In addition, we identified the mutation in fur1 as a single base-pair exchange, guanine --> adenine, leading to an amino acid exchange G --> R at position 281. Furthermore, we showed that this mutation is indeed responsible for the observed alterations in nucleoside transport in the fur1-1 line, because the introduction of this mutation in AtENT3 promoted fluorouridine resistance in yeast cells expressing this mutated protein. The biochemical characterization of AtENT3 expressed in Xenopus oocytes identified a proton-coupled concentrative mode of nucleoside transport, although this carrier possesses structural features characteristic for equilibrative nucleoside carriers.  相似文献   

2.
Abstract

3′-Deoxy-3′-C-methyleneuridine nucleoside 1 1 has been incorporated into oligodeoxynucleotides. Relative to the unmodified references, oligomers containing nucleoside 1 displayed reduced binding affinities towards complementary DNA and RNA with a tendency towards RNA-selective hybridization.  相似文献   

3.
A series of N(3)-substituted thymine acyclic nucleoside phosphonates bearing a number of (phosphonomethoxy)alkyl groups were synthesized and investigated for their ability to inhibit the human thymidine phosphorylase expressed in V79 Chinese hamster cells, as well as thymidine phosphorylase from SD-lymphoma, Escherichia coli and human placenta. In comparison to N(1)- substituted analogues which possess a considerable inhibitory activity towards thymidine phosphorylase from SD-lymphoma, the results showed a marginal inhibitory effect of these compounds. None of the presented N(3)-substituted derivatives possess a significant cytostatic activity.  相似文献   

4.
An achiral, acyclic nucleoside analogue has been incorporated once or twice in oligodeoxyribonucleotides by the phosphoramidite method, and conditions found which allow deprotection of the oligonucleotides containing a sensitive modified allylic unit. The binding affinity of the modified oligonucleotides towards complementary DNA and RNA was reduced compared to unmodified DNA (DeltaT(m) -2 to -6.5 degrees C). An oligonucleotide with two modifications at the 3'-end showed considerable resistance towards cleavage with a 3'-exonuclease.  相似文献   

5.
6.
The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  相似文献   

7.
Macromolecular nuclear import is an energy-and signal-dependent process. The best characterized type of nuclear import consists of proteins carrying the classical NLS that is mediated by the heterodimeric receptor importin alpha/beta. Spliceosomal snRNPs U1, U2, U4, and U5 nuclear import depend both on the 5' terminal m3G (trimethylguanosine) cap structure of the U snRNA and the Sm core domain. Snurportin 1 recognizes the m3G-cap structure of m3G-capped U snRNPs. In this report, we show how a synthesized trimethylguanosine nucleoside affects the binding of Snurportin 1 to m3G-capped U1 snRNA in a UV-cross-linking assay. The data indicated that TMG nucleoside is an essential component required in the recognition by Snurportin 1, thus suggesting that interaction of Snurportin 1 with U1 snRNA is not strictly dependent on the presence of the whole cap structure, but rather on the presence of the TMG nucleoside structure. These results indicate that the free nucleoside TMG could be a candidate to be an inhibitor of the interaction between Snurportin 1 and U snRNAs. We also show the behavior of free TMG nucleoside in in vitro U snRNPs nuclear import.  相似文献   

8.
9.
The concentrative nucleoside transporter (CNT) protein family in humans is represented by three members, hCNT1, hCNT2, and hCNT3. hCNT3, a Na+/nucleoside symporter, transports a broad range of physiological purine and pyrimidine nucleosides as well as anticancer and antiviral nucleoside drugs, and belongs to a different CNT subfamily than hCNT1/2. H+-dependent Escherichia coli NupC and Candida albicans CaCNT are also CNT family members. The present study utilized heterologous expression in Xenopus oocytes to investigate the specificity, mechanism, energetics, and structural basis of hCNT3 cation coupling. hCNT3 exhibited uniquely broad cation interactions with Na+, H+, and Li+ not shared by Na+-coupled hCNT1/2 or H+-coupled NupC/CaCNT. Na+ and H+ activated hCNT3 through mechanisms to increase nucleoside apparent binding affinity. Direct and indirect methods demonstrated cation/nucleoside coupling stoichiometries of 2:1 in the presence of Na+ and both Na+ plus H+, but only 1:1 in the presence of H+ alone, suggesting that hCNT3 possesses two Na+-binding sites, only one of which is shared by H+. The H+-coupled hCNT3 did not transport guanosine or 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, demonstrating that Na+- and H+-bound versions of hCNT3 have significantly different conformations of the nucleoside binding pocket and/or translocation channel. Chimeric studies between hCNT1 and hCNT3 located hCNT3-specific cation interactions to the C-terminal half of hCNT3, setting the stage for site-directed mutagenesis experiments to identify the residues involved.  相似文献   

10.
The demonstrated in vitro and in vivo activity of 3'-azido-3'-deoxythymidine (N3dThd) against the infectivity and the cytopathic effect of human immunodeficiency virus has prompted an investigation of the mechanism by which this nucleoside analogue permeates the cell membrane. As with the transport of thymidine, the influx of N3dThd into human erythrocytes and lymphocytes was nonconcentrative during short incubation times (less than 5 min) which did not allow significant metabolism of this nucleoside. However, in contrast with thymidine transport, the initial velocity of N3dThd influx was strictly a linear function of nucleoside concentration (0.5-10 mM), without evidence of saturability; insensitive to micromolar concentrations of potent inhibitors of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep); insensitive to a 1000-fold excess of other nucleosides (thymidine, uridine, 2-chloroadenosine); and relatively insensitive to temperature, with Q10 values (37-27 degrees C) of 1.4 and 2.7 for N3dThd and thymidine, respectively, determined in erythrocytes. Although the above results indicate that N3dThd permeates the cell membrane chiefly by nonfacilitated diffusion and not via the nucleoside transporter, millimolar concentrations of this nucleoside analogue were observed to inhibit both zero-trans influx of thymidine and efflux of thymidine from [3H]thymidine-loaded erythrocytes. The partition coefficients (1-octanol:0.1 M sodium phosphate, pH 7.0) of N3dThd and thymidine were determined to be 1.26 and 0.064, respectively. The unusual ability of N3dThd to diffuse across cell membranes independently of the nucleoside transport system may be attributed to the considerable lipophilicity imparted to this molecule by the replacement of the 3'-hydroxyl group of thymidine with an azido moiety.  相似文献   

11.
The influx of 2',3'-dideoxythymidine into human erythrocytes was characterized to gain insight into the molecular properties of 3'-azido-3'-deoxythymidine which allow this latter nucleoside analog to permeate cell membranes by nonfacilitated diffusion (J. Biol. Chem. 262, 5748-5754 (1987]. The influx of 2',3'-dideoxythymidine was (1) nonconcentrative, (2) a linear function of permeant concentration (0.05 to 12 mM), and (3) insensitive to potent inhibitors of nucleoside transport and to permeants of either the nucleoside or nucleobase transporter. It is concluded that 2',3'-dideoxythymidine, like 3'-azido-3'-deoxythymidine, permeates the human erythrocyte membrane predominantly by nonfacilitated diffusion. This unusual characteristic of these two nucleoside analogs is attributed both to their lack of a 3'-hydroxyl moiety, a structural determinant which appears to be important for transport by the nucleoside carrier, and to their relatively high partition coefficients (greater than or equal to 0.2).  相似文献   

12.
Macromolecular nuclear import is an energy-and signal-dependent process. The best characterized type of nuclear import consists of proteins carrying the classical NLS that is mediated by the heterodimeric receptor importin α/β. Spliceosomal snRNPs U1, U2, U4, and U5 nuclear import depend both on the 5’ terminal m3G (trimethylguanosine) cap structure of the U snRNA and the Sm core domain. Snurportin 1 recognizes the m3G-cap structure of m3G-capped U snRNPs. In this report, we show how a synthesized trimethylguanosine nucleoside affects the binding of Snurportin 1 to m3G-capped U1 snRNA in a UV-cross-linking assay. The data indicated that TMG nucleoside is an essential component required in the recognition by Snurportin 1, thus suggesting that interaction of Snurportin 1 with U1 snRNA is not strictly dependent on the presence of the whole cap structure, but rather on the presence of the TMG nucleoside structure. These results indicate that the free nucleoside TMG could be a candidate to be an inhibitor of the interaction between Snurportin 1 and U snRNAs. We also show the behavior of free TMG nucleoside in in vitro U snRNPs nuclear import.  相似文献   

13.
Abstract

Anhydro 1- (2', 3', 5’ -tri-Oacetyl-β-D-ribofuranosyl) -5-hydroxy-7-oxoimidazo[2, 1-b]-1, 3-thiazinium hydroxide, a mesoionic imidazothiazine nucleoside, was prepared by the condensation of the appropriately acetylated ribofuranosyl imidazoline-2-thione with carbon suboxide. Although stable at or below O° C, the product rapidly underwent ring-opening at room temperature to afford the precursor nucleoside. A possible scheme for this ring-opening reaction is proposed based on the results of a model study employing anhydro 1-methyl-5-hydrcxy-7-oxoimidazo[2, 1-b]-1, 3-thiazinium hydroxide.  相似文献   

14.
Abstract

A new modified nucleoside, 3-(3-amino-3-carboxypropyl)-uridine was isolated from a 24 hour collection of a normal human urine. The structure was assigned on the basis of UV, NMR and mass spectrometry data and confirmed by comparison of the spectral data and HPLC mobilities with those of an authentic sample. Origin and significance of this nucleoside in relation to tRNA is discussed. The new nucleoside is present also in the urine of cancer patients but in smaller amounts.  相似文献   

15.
The purpose of this study was to determine whether the gamma-S of nucleoside thiotriphosphates and the non-bridging sulfur of internucleotide phosphorothioate diesters possess sufficient thiol character to form adducts with maleimides. Adenosine triphosphate gamma-S (ATPS) and thymidyl-PS-thymidine (TPST) were each reacted with the reporter molecule N-1 pyrene maleimide (PM) and the fluorescence intensity was recorded. The observed reactivity of the phosphorothioate nucleotides towards maleimide was used as a basis for preparing covalent protein-nucleotide conjugates of ATPS and of the internucleotide phosphorothioate diester, deoxyadenylyl-PS-deoxy-adenylyl-PS-deoxyadenosine (dA3(PS)2). The absorbance spectra of bovine serum albumin (BSA) conjugates of ATPS and of dA3(PS)2 showed the formation of protein-nucleotide conjugates, with absorbance maxima near 260 nm. The degree of conjugation was 1.69 nucleotides (nt)/BSA molecule for ATPS and 0.44 nt/BSA molecule for dA3(PS)2. The extent of conjugation of the gamma-S of the nucleoside thiotriphosphate and of the non-bridging sulfur of the internucleotide phosphorothioate diester with maleimide-derivatized protein agreed with their relative reactivity towards PM. Both the gamma-S of the nucleoside thiotriphosphate and the internucleotide phosphorothioate diester were found to possess sufficient thiol character to permit formation of maleimide-mediated protein conjugates.  相似文献   

16.
17.
New potential cancer-driven as well as HIV-driven nucleoside heteroanalogs, such as 3'-thio- and 3'- as well as 5'-selenosubstituted thymidines, have been synthesized. We also report an effective method for the preparation of novel nucleoside derivatives, bis(deoxynucleoside) diselenides, in nearly quantitative yields. The North conformation is significantly populated in the conformational equilibrium for 3'-alpha-alkylthiothymidines.  相似文献   

18.
2',3'-dideoxycytidine permeation of the human erythrocyte membrane   总被引:1,自引:0,他引:1  
The mechanism by which 2,3'-dideoxycytidine, an inhibitor of HIV-I infectivity, permeates the cell membrane was investigated. The influx of ddCyd into human erythrocytes was nonconcentrative. The initial velocity of both ddCyd influx and efflux was, in contrast to compounds that permeate the cell membrane via the nucleoside transporter, a linear function of nucleoside concentration in the 1 microM to 10 mM range and relatively insensitive to temperature. Furthermore, potent inhibitors of nucleoside transporter and other nucleosides were found to inhibit ddCyd influx only partially or not at all suggesting that ddCyd permeates the human erythrocyte membrane predominantly by nonfacilitated diffusion. This unusual characteristic seems to be due to the lack of 3'-hydroxyl moiety of ddCyd which appears to be an important determinant for the nucleoside carrier specificity rather than to lipid solubility itself. As far as permeation of the cell membrane is concerned ddCyd shares these properties with 2',3'-dideoxythymidine and 3'-azido-3'-deoxythymidine.  相似文献   

19.
Abstract

The nucleoside derivative 1-(3-azido-2,3-dideoxy-beta-D-ribo-hexofuranosyl)thymine has been synthesized from 3-0-benzyl-1,2-0-isopropylidene-alpha-D-glucofuranose-5,6-carbonate in an overall yield of 16%. The key step in the synthesis involves the selective deacetylation of a nucleoside derivative having a cyclic carbonate moiety.  相似文献   

20.
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号