首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

2.
Abstract

A systematic study to evaluate the ability of 5′-DNA-3′-p-(N)-PNA-(C) chimeras to form triple helix structures has been undertaken. Preliminary results carried out on a 16-mer chimera with three PNA monomers at the 3′-end showed the formation of a stable DNA-PNA/DNA/DNA triplex, having similar conformational behaviour to a canonical DNA/DNA/DNA triplex.  相似文献   

3.
Linear polyamines are excellent promoters of triplex DNA formation. The effects of structural rigidization of polyamines on triplex DNA stability are not known at present. We wished to develop a series of polyamine analogs as secondary ligands for triplex DNA stabilization for antigene applications. To accomplish this goal, we synthesized cyclopolyamines by interconnecting the two amino or imino groups of linear polyamines with a --(CH2)n-bridge (n=3,4,5). Melting temperature (Tm) data showed that [4,3]-spermine and [4,4]-spermine stabilized poly(dA) x 2poly(dT) triplex at >25 microM concentrations (Tm = 71 degrees C at 100 microM). The dTm/dlog [polyamine] values for these compounds were 26 and 40, respectively. [4,3]-Spermine and [4,4]-spermine also stabilized triplex DNA formed by a purine-motif triplex-forming oligonucleotide, TG3TG4TG4TG3T with its target duplex, as determined by Tm, circular dichroism (CD) spectroscopy, and electrophoretic mobility shift assay (EMSA). In contrast, [4,4]-putrescine and [4,5]-putrescine as well as [4,5]-spermine had no triplex DNA stabilizing effect. CD spectra also showed triplex DNA aggregation and psi-DNA formation at >100 microM [4,3]-spermine. These data demonstrate that structural rigidization of linear polyamines has a profound effect on their ability to stabilize triplex DNA and provoke conformational transitions.  相似文献   

4.
Targeting double-stranded DNA with homopyrimidine PNAs results in strand displacement complexes PNA/DNA/PNA rather than PNA/DNA/DNA triplex structures. Not much is known about the binding properties of DNA-PNA chimeras. A 16-mer 5'-DNA-3'-p-(N)PNA(C) has been investigated for its ability to hybridize a complementary duplex DNA by DSC, CD, and molecular modeling studies. The obtained results showed the formation of a triplex structure having similar, if not slightly higher, stability compared to the same all-DNA complex.  相似文献   

5.
6.
7.
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.  相似文献   

8.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

9.
The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na+Cl- counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt x DNA x DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermodynamic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20 degrees for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to -30 degrees, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3'-endo domain and C2'-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt x DNA x DNmt hybrid triplex is compared to the DNG x DNA x DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N+H2)-NH-).  相似文献   

10.
Topoisomerase I (Top1) activities are sensitive to various endogenous base modifications, and anticancer drugs including the natural alkaloid camptothecin. Here, we show that triple helix-forming oligonucleotides (TFOs) can enhance Top1-mediated DNA cleavage by affecting either or both the nicking and the closing activities of Top1 depending on the position and the orientation of the triplex DNA structure relative to the Top1 site. TFO binding 1 bp downstream from the Top1 site enhances cleavage by inhibiting religation and to a lesser extent DNA nicking. In contrast, TFO binding 4 bp downstream from the Top1 site enhances DNA nicking especially when the 3′ end of the TFO is proximal to the Top1 site. However, when the orientation of the triplex is inverted, with its 5′ terminus 4 bp downstream from the Top1 site, religation is also inhibited. These position- and orientation-dependent effects of triplex structures on the Top1-mediated DNA cleavage and religation are discussed in the context of molecular modeling and effects of TFO on DNA twist and mobility at the duplex/triplex junction.  相似文献   

11.
Sequence-specific triple helix formation with genomic DNA   总被引:1,自引:0,他引:1  
Ye Z  Guntaka RV  Mahato RI 《Biochemistry》2007,46(40):11240-11252
  相似文献   

12.
Polycation comb-type copolymer that is composed of polylysine backbone and dextran side chains (PLL-g-Dex) has previously been shown to stabilize duplex and triplex DNAs quite effectively. In this study, we have conjugated PLL-g-Dex with oligonucleotides (ODN) aiming to increase the triplex stabilizing efficiency of the copolymer. Here we have demonstrated that the copolymer-TFO conjugates selectively stabilize triplex DNA. Also its potential to form triplex DNA was found to be greater than PLL-g-Dex/ODN mixture.  相似文献   

13.
The most common chromosomal translocation in cancer, t(14;18), occurs at the bcl-2 major breakpoint region (Mbr) in follicular lymphomas. The 150-bp bcl-2 Mbr, which contains three breakage hotspots (peaks), has a single-stranded character and, hence, a non-B DNA conformation both in vivo and in vitro. Here, we use gel assays and electron microscopy to show that a triplex-specific antibody binds to the bcl-2 Mbr in vitro. Bisulfite reactivity shows that the non-B DNA structure is favored by, but not dependent upon, supercoiling and suggests a possible triplex conformation at one portion of the Mbr (peak I). We have used circular dichroism to test whether the predicted third strand of that suggested structure can indeed form a triplex with the duplex at peak I, and it does so with 1:1 stoichiometry. Using an intracellular minichromosomal assay, we show that the non-B DNA structure formation is critical for the breakage at the bcl-2 Mbr, because a 3-bp mutation that disrupts the putative peak I triplex also markedly reduces the recombination of the Mbr. A three-dimensional model of such a triplex is consistent with bond length, bond angle, and energetic restrictions (stacking and hydrogen bonding). We infer that an imperfect purine/purine/pyrimidine (R.R.Y) triplex likely forms at the bcl-2 Mbr in vitro, and in vivo recombination data favor this as the major DNA conformation in vivo as well.  相似文献   

14.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
16.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

17.
Ye S  Li H  Cao W 《Biosensors & bioelectronics》2011,26(5):2215-2220
A novel electrogenerated chemiluminescence (ECL) biosensor based on the construction of triplex DNA for the detection of adenosine was designed. The ECL biosensor employs an aptamer as a molecular recognition element, and quenches ECL of tris(2,2'-bipyridine) ruthenium (Ru(bpy)(3)(2+)) by ferrocenemonocarboxylic acid (FcA). Through self-assembly technology, the ECL probe of thiolated hairpin adenosine aptamer tagged was self-assembled onto the surface of a gold electrode with an ECL signal producer Ru(bpy)(3)(2+) derivative (Ru-DNA-1). The adenosine aptamer, including a section of triplex characteristic chain, formatted triplex DNA with two other DNAs (DNA-2, Fc-DNA-3) in the presence of triplex DNA binder coralyne chloride (CORA). Fc-DNA-3 was tagged with an ECL quencher ferrocenemonocarboxylic acid (FcA), a quenching probe. In the presence of adenosine, the aptamer sequence (Ru-DNA-1) prefers to form the aptamer-adenosine complex with hairpin configuration and the switch of the DNA-1 occurs in conjunction with the generation of a strong ECL signal owing to the dissociation of a quenching probe. Meanwhile, a control experiment was performed; the ECL-duplex biosensor was designed to detect adenosine. The detection limits were 2.7×10(-10) mol L(-1) and 2.3×10(-9) mol L(-1) for the ECL-triplex DNA biosensor and ECL-duplex DNA biosensor, respectively, which demonstrated that the ECL-triplex DNA biosensor improved the sensitivity and specificity greatly.  相似文献   

18.
19.
In this study, we investigate the role of the apex nucleotides of the two turns found in the intramolecular "paperclip" type triplex DNA formed by 5'-TCTCTCCTCTCTAGAGAG-3'. Our previously published structure calculations show that residues C7-A18 form a hairpin turn via Watson-Crick basepairing and residues T1-C6 bind into the major groove of the hairpin via Hoogsteen basepairing resulting in a broad turn of the T1-T12 5'-pyrimidine section of the DNA. We find that only the C6C7/G18 apex triad (and not the T12A13/T1 apex triad) is required for intramolecular triplex formation, is base independent, and occurs whether the purine section is located at the 5' or 3' end of the sequence. NMR spectroscopy and molecular dynamics simulations are used to investigate a bimolecular complex (which retains only the C6C7/G18 apex) in which a pyrimidine strand 5'- TCTCTCCTCTCT-3' makes a broad fold stabilized by the purine strand 5'-AGAGAG-3' via Watson Crick pairing to the T8-T12 and Hoogsteen basepairing to T1-T5 of the pyrimidine strand. Interestingly, this investigation shows that this 5'-AGAGAG-3' oligo acts as a new kind of triplex forming oligonucleotide, and adds to the growing number of triplex forming oligonucleotides that may prove useful as therapeutic agents.  相似文献   

20.
The equimolar mixture of d(CTCTTCTTTCTTTTCTTTCTTCTC) (dY24) and d(GAGAAGAAAGA) (dR11) [designated (dY24).(dR11)], forms at pH = 5 a DNA triplex, which mimicks the H-DNA structure. The DNA triplex was identified by the following criteria: (i) dY24 and dR11 co-migrate in a poly-acrylamide gel, with a mobility and a retardation coefficient comparable to those observed for an 11-triad DNA triplex, previously characterized in our laboratories (1); (ii) the intercalator ethidium bromide shows a poor affinity for (dR11).(dY24) at pH = 5, and a high affinity at pH = 8; (iii) the (dR11).(dY24) mixture is not a substrate for DNase I at pH = 5; (iv) the CD spectrum of (dR11).(dY24), at pH = 5, is consistent with those previously reported for triple-stranded DNA. The (dR11).(dY24) mixture exhibits a thermally induced co-operative transition, which appears to be monophasic, reversible and concentration dependent. This transition is attributed to the disruption of the DNA triplex into single strands. The enthalpy change of the triplex-coil transition was measured by DSC (delta Hcal = 129 +/- 6 kcal/mol) and, assuming a two-state model, by analysis of UV-denaturation curves (average of two methods delta HUV = 137 +/- 13 kcal/mol). Subtracting from delta Hcal of triplex formation the contributions due to the Watson-Crick helix and to the protonation of the C-residues, we found that each pyrimidine binding into the major groove of the duplex, through a Hoogsteen base pair, is accompanied by an average delta H = -5.8 +/- 0.6 kcal/mol. The effect on the stability of the (dR11).(dY24) triplex due to the substitution of a T:A:T triad with a T:T:T one was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号