首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-chain, disulfide linked, insulin-like compound embodying the A-domain of insulin-like growth factor I (IGF-I) and the B-chain of insulin has been synthesized and characterized with respect to insulin-like biological activity and growth-promoting potency. The compound displays a potency of ca. 41% relative to insulin in assays for insulin-like activity (e.g., lipogenesis) but significantly higher activity than insulin, ca. 730% relative to insulin, in growth factor assays (e.g., thymidine incorporation). The compound is, however, a less potent growth factor than IGF-I itself, ca. 26.5% relative to IGF-I, and is not recognized by IGF carrier proteins. We conclude that structural features contained in the A-domain of IGF-I are primarily responsible for the growth-promoting ability displayed by IGF-I, while features in the B-domain are responsible for recognition by IGF carrier proteins.  相似文献   

2.
We have prepared by semisynthetic methods a two-chain insulin/insulin-like growth factor I hybrid that contains a synthetic peptide related to residues 22-41 of insulin-like growth factor I linked via peptide bond to ArgB22 of des-octapeptide-(B23-B30)-insulin and have applied the analog to the analysis of ligand interactions with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. Relative potencies for the inhibition of 125I-labeled insulin-like growth factor I binding to type I insulin-like growth factor receptors were 1.0:0.20:0.003 for insulin-like growth factor I, the hybrid analog, and insulin, respectively. Corresponding relative potencies for the inhibition of 125I-labeled insulin binding to insulin receptors were 0.007:0.28:1 for the three respective peptides. Additional studies identified that the hybrid analog interacts with only one of two populations of insulin-like growth factor I binding sites on placental plasma membranes and permitted the analysis of insulin-like growth factor I interactions with the separate populations of binding sites. We conclude that (a) des-octapeptide-(B23-B30)-insulin can serve well as a scaffold to support structural elements of insulin-like growth factor I and insulin necessary for high affinity binding to their receptors, (b) major aspects of structure relevant to the conferral of receptor binding affinity lie in the COOH-terminal region of the insulin B chain and in the COOH-terminal region of the insulin-like growth factor I B domain and in its C domain, and (c) the evolution of ligand-receptor specificity in these systems has relied as much on restricting interactions (through the selective introduction of negative structural elements) as it has on enhancing interactions (through the introduction of affinity conferring elements of structure).  相似文献   

3.
The murine non-fusing muscle cell line contains distinct receptors for insulin and insulin-like growth factors. Pretreatment of myocytes with insulin for 20 h at 37 degrees C inhibits the binding of [125I]iodoinsulin by 60% without affecting the binding of [125I]iodoinsulin-like growth factor I. The ED50 values for down-regulation of the insulin and insulin-like growth factor receptor by their respective ligands are 1 nM and 3 nM, respectively. Insulin, (Thr-59)-insulin-like growth factor I and multiplication-stimulating activity stimulate 2-[3H]deoxyglucose transport in myocytes with ED50 values of 5 nM, 5.6 nM and 33 nM, respectively. In order to determine whether (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes via its own receptor or the insulin receptor, we determined the activity of these peptides after down-regulation of the insulin receptor. The rate of 2-[3H]deoxyglucose transport in myocytes pretreated with insulin (5 nM) is elevated but returns to control levels by 1 h after the washout of insulin. The dose-response curve for insulin-stimulated 2-[3H]deoxyglucose transport is shifted to the right (ED50 greater than 100 nM) immediately after insulin washout but is normal by 1 h after insulin washout. In contrast, the dose-response curve for (Thr-59)-insulin-like growth factor I is unchanged in insulin-pretreated cells immediately after insulin washout. These data show that (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes by acting through an insulin-like growth factor receptor and not through the insulin receptor. Since multiplication-stimulating activity is 6-fold less active than (Thr-59)-insulin-like growth factor, they both may be acting through a type 1 insulin-like growth factor receptor.  相似文献   

4.
5.
A peptide with an isoelectric point of 6.5-7.0 was purified from Cohn fraction IV on the basis of its capacity to cross react with labelled insulin to human placental cell membrane receptors. It possesses insulin-like activity in the adipocyte bioassay (30 mU insulin equivalent/mg of protein) which is in the same order as its activity in the insulin radioreceptorassay (25.5 mU/mg). Somatomedin bioactivity is 40 U/mg in the porcine cartilage assay. In contrast, although in quiescent human fibroblast this peptide preparation has 6% of the mitogenic potency of somatomedin-C/insulin-like growth factor I on a weight basis, cross-reactivity in radioimmunoassay for somatomedin-C/insulin-like growth factor I, insulin-like growth factor II and insulin are very low. It is concluded that this peptide, although exhibiting the major biological characteristics of an insulin-like growth factor is different from the hitherto described somatomedins.  相似文献   

6.
Two synthetic insulin-like compounds consisting of the B-chain of insulin linked via disulfide bonds to A chains corresponding to the A-domain or the A- and D-domains of insulin-like growth factor I (IGF-I) have been evaluated for mitogenic activity and for binding to IGF receptors and IGF carrier proteins. Both compounds are 3- to 5-fold more potent mitogens than insulin, and have a comparably increased affinity for the type I IGF receptor that mediates these mitogenic effects in chick embryo fibroblasts. Neither compound interacts with IGF carrier proteins. These results indicate that the A-domain of IGF-I is importantly involved in its growth-promoting properties.  相似文献   

7.
The structure of receptors for insulin-like growth factors in rat liver plasma membranes and the BRL 3A2 rat liver cell line has been examined by chemical cross-linking with disuccinimidyl suberate and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. Two receptor subtypes have been identified: (i) 125I multiplication-stimulating activity cross-linked to liver membranes or intact cells appeared in a complex of Mr = 260,000 (reduced) and 220,000 (nonreduced) and (ii) 125I-insulin-like growth factor I cross-linked to BRL 3A2 cells appeared predominantly in two bands of Mr greater than 300,000 without disulfide reduction and in a Mr = 130,000 complex following reduction. The two subtypes of insulin-like growth factor receptors identified by structural analysis correspond to previously observed differences in their specificity for insulin and insulin-like growth factors.  相似文献   

8.
The immunoreactivity of the multiple species of multiplication-stimulating activity (MSA) purified from medium conditioned by a rat liver cell line (BRL-3A) has been examined. Antibodies were raised in rabbits following immunization with MSA II polypeptides. Subpopulations of antibodies were purified from one antiserum using DEAE-cellulose chromatography. One antibody subpopulation recognized common antigenic determinants on MSA I and MSA II polypeptides; whereas a second antibody subpopulation recognized common determinants on MSA I, II, and III polypeptides. In a radioimmunoassay utilizing 125I-MSA III-2 and a purified antibody subpopulation, the human somatomedins (somatomedin A, insulin-like growth factor I and II) showed weak, but significant cross-reactivity: insulin-like growth factor II was 10% as potent as MSA II. By contrast, somatomedin partially purified from rat serum, insulin, growth hormone, epidermal growth factor, nerve factor, and fibroblast growth factor, showed no reactivity in the radioimmunoassay.  相似文献   

9.
Involvement of the adenylyl cyclase signaling system in the mechanism of action of the mammalian insulin and epidermal growth factor as well as of insulin-like peptide isolated from the bivalve mollusk Anodonta cygnea has been studied. It was shown for the first time that insulin and insulin-like peptide exert in vitro the GTP-dependent stimulating action on the adenylyl cyclase activity. Epidermal growth factor has an analogous effect. Effectiveness of the peptides decreased in the order insulin-like peptide > epidermal growth factor > insulin in the foot smooth muscles of A. cygnea and insulin > epidermal growth factor > insulin-like peptide in the skeletal muscles of rat.  相似文献   

10.
We have investigated the role of the C-terminal of the alpha-subunit in the insulin receptor family by characterizing chimeric mini-receptor constructs comprising the first three domains (468 amino acids) of insulin receptor (IR) or insulin-like growth factor I receptor (IGFIR) combined with C-terminal domain from either insulin receptor (IR) (residues 704-719), IGFIR, or insulin receptor-related receptor (IRRR). The constructs were stably expressed in baby hamster kidney cells and purified, and binding affinities were determined for insulin, IGFI, and a single chain insulin/IGFI hybrid. The C-terminal domain of IRRR was found to abolish binding in IR and IGFIR context, whereas other constructs bound ligands. The two constructs with first three domains of the IR demonstrated low specificity for ligands, all affinities ranging from 3.0 to 15 nM. In contrast, the constructs with the first three domains of the IGFIR had high specificity, the affinity of the novel minimized IGFIR for IGFI was 1.5 nM, whereas the affinity for insulin was more than 3000 nM. When swapping the C-terminal domains in either receptor context only minor changes were observed in affinities (<3-fold), demonstrating that the carboxyl-terminal of IR and IGFIR alpha-subunits are interchangeable and suggesting that this domain is part of the common binding site.  相似文献   

11.

An analogue of insulin in which the naturally occurring tyrosine residue in position B16 is replaced by a glutamine residue has been synthesized. Glutamine appears in the corresponding position in the B-domain of the insulin-like growth factors. This analogue displays 9% of the potency of insulin in binding to the insulin receptor from rat liver plasma membranes, 17% in stimulating the conversion of [3-3H] glucose into lipids in rat adipocytes, and 23% in insulin radioimmunoassay, but 40% of the potency of insulin in stimulating DNA synthesis in cultured chick fibroblasts. The analogue is a more potent mitogen than is a hybrid molecule which contains the A-chain of insulin and the entire B-domain sequence of IGF-I.

  相似文献   

12.
We have synthesized an insulin-like compound, consisting of the B-chain of bovine insulin and an A-chain corresponding to the A-domain of human insulin-like growth factor-I (IGF-I), in which the isoleucine residue normally present in position 2 of the A-domain of IGF-I has been replaced with glycine. Biological evaluation of the compound indicated that its insulin-like activity (insulin receptor-binding and stimulation of lipogenesis) was 0.2%, and its growth-factor activity (stimulation of thymidine incorporation) was less than 1%, both relative to natural insulin. We conclude that interactions between IleA2 and TyrA19, which are crucial to high biological activity in insulin, are also present in IGF-I, and are equally critical for its biological activity.  相似文献   

13.
A modified insulin, in which the A chain moiety has been extended at the C-terminus with the “D region” of the insulin-like growth factor II, has been synthesized essentially by the procedures employed in this laboratory for the synthesis of insulin and analogues. This hybrid molecule displayed reduced insulin-like activities, 34.5% receptor binding, and 40.4% stimulation of lipogenesis relative to natural insulin. These findings suggest that the extension sequence (“D region”) attached at the C-terminus of the A chain may partially cover the putative receptor binding region of insulin, in support of speculations based on computer-generated models. These same models indicate that the extension peptide may interfere with one of the two regions implicated in insulin antibody recognition. In this regard, radioimmunoassay of the hybrid revealed potency even more reduced than biological activity: 18% relative to insulin. Growth factor assays of the hybrid (this laboratory, unpublished data) suggest that the “D region” of insulin-like growth factor II is not in itself the determinant of growth-promoting activity.  相似文献   

14.
We recently described the identification of a non-peptidyl fungal metabolite (l-783,281, compound 1), which induced activation of human insulin receptor (IR) tyrosine kinase and mediated insulin-like effects in cells, as well as decreased blood glucose levels in murine models of Type 2 diabetes (Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M. T. , Pelaez, F., Ruby, C., Kendall, R. L., Mao, X., Griffin, P., Calaycay, J., Zierath, J. R., Heck, J. V., Smith, R. G. & Moller, D. E. (1999) Science 284, 974-977). Here we report the characterization of an active analog (compound 2) with enhanced IR kinase activation potency and selectivity over related receptors (insulin-like growth factor I receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor). The IR activators stimulated tyrosine kinase activity of partially purified native IR and recombinant IR tyrosine kinase domain. Administration of the IR activators to mice was associated with increased IR tyrosine kinase activity in liver. In vivo oral treatment with compound 2 resulted in significant glucose lowering in several rodent models of diabetes. In db/db mice, oral administration of compound 2 elicited significant correction of hyperglycemia. In a streptozotocin-induced diabetic mouse model, compound 2 potentiated the glucose-lowering effect of insulin. In normal rats, compound 2 improved oral glucose tolerance with significant reduction in insulin release following glucose challenge. A structurally related inactive analog (compound 3) was not effective on insulin receptor activation or glucose lowering in db/db mice. Thus, small molecule IR activators exert insulin mimetic and sensitizing effects in cells and in animal models of diabetes. These results have implications for the future development of new therapies for diabetes mellitus.  相似文献   

15.
Exposure to hyperglycemia in utero impairs rat nephrogenesis. The effect of maternal diabetes on insulin-like growth factors and their receptors in the fetal kidney is associated with an increase in both mRNA and protein of the insulin-like growth factor II/mannose 6-phosphate receptor. However, this receptor has never been localized in the fetal kidney. The spatial and temporal distribution of the three insulin-like growth factor receptors (insulin-like growth factor I receptor, insulin-like growth factor II/mannose 6-phosphate receptor and insulin receptor) in rat metanephros during both normal and streptozotocin-induced diabetic renal development was investigated using in situ hybridization and immunohistochemistry. All receptors were found in the fetal kidney from the start of nephrogenesis. Insulin-like growth factor I receptor expression was ubiquitous and continuously present during metanephric development. Insulin receptor expression was developmentally regulated during kidney maturation with an enhanced expression in proximal tubules at the late stages of development. Insulin-like growth factor II/mannose 6-phosphate receptor expression was ubiquitous in the early stages of development and was dramatically decreased at the late stages of normal kidney development. Insulin receptor and insulin-like growth factor I receptor expressions were unchanged in diabetic metanephroi. Although the spatial expression of insulin-like growth factor II/mannose 6-phosphate receptor was unaffected by hyperglycemia, its expression was not downregulated in the mesenchyme of the nephrogenic zone of diabetic fetuses on gestational day 20. This study suggests a crucial role of insulin-like growth factor II/mannose 6-phosphate receptor in the pathogenesis of the impaired nephrogenesis in fetuses of diabetic mothers.  相似文献   

16.
1. The presence of a substance associated with human albumin that exerts anti-insulin activity on the isolated rat diaphragm has been confirmed. This factor has been removed from albumin, thereby providing a source of non-antagonistic carrier protein. 2. Derivatives of the polypeptide B chain of insulin obtained by chemical scission of the interchain disulphide bonds have been separated by conventional techniques. In the presence of non-antagonistic albumin, the reduced and sulpho-B chain preparations inhibited insulin action on muscle. 3. The B chain resulting from reductive cleavage of insulin by bovine-liver extracts, in association with human albumin, exhibited a comparable anti-insulin effect. 4. It is postulated that the B chain interacts with albumin to enable solubilization of the chain and that inhibition of insulin action on muscle may occur as a result of competition for cellular receptor sites by the B chain. 5. The implication of these findings in relation to a circulating insulin antagonist is discussed.  相似文献   

17.
Autophosphorylation of the insulin receptor on tyrosine residues and activation of the endogenous insulin receptor kinase is postulated to be a critical step in the mechanism of action of insulin. To investigate this hypothesis, the insulin-mimicking effects of vanadate (sodium orthovanadate) and H2O2 (hydrogen peroxide) alone and in combination were examined in freshly isolated rat adipocytes. Vanadate and H2O2 stimulated the translocation of insulin-like growth factor II (IGF-II) receptors to the plasma membrane of rat adipocytes in a manner analogous to insulin. IGF-II binding was increased by maximally effective doses of vanadate (1 mM), H2O2 (1 mM), and insulin (10 ng/ml) to 172 +/- 10, 138 +/- 12, and 289 +/- 16% of control, respectively. Previously (Kadota, S., Fantus, I. G., Hersh, B., and Posner, B. I. (1986) Biochem. Biophys. Res. Commun. 138, 174-178), we showed that the combination of these concentrations of vanadate plus insulin was not more potent than insulin alone. In this study, similar results were found with H2O2 plus insulin. In contrast, the combination of vanadate plus H2O2 was synergistic, effecting an increase of IGF-II binding to 488 +/- 23% of control. Amiloride inhibited the effects of vanadate, H2O2, and insulin. Adipocyte insulin receptors purified by wheat germ agglutinin chromatography were assayed for tyrosine kinase activity using the synthetic substrate poly(Glu,Tyr) (4:1). Basal activity (no in vitro insulin) was stimulated by exposure of intact cells to vanadate, H2O2, insulin, and vanadate + H2O2 to 147.7 +/- 4.3, 178.2 +/- 43.4, 495.0 +/- 67.1, and 913.2 +/- 92.0% of control, respectively. The stimulation of tyrosine kinase activity by these agents was accounted for by the insulin receptor as the augmented activity was completely immunoprecipitated with insulin receptor antibody. In these studies, the increase in IGF-II binding correlated significantly with the activation of the insulin receptor-tyrosine kinase (r = 0.927, p less than 0.001). These data support the hypothesis that activation of the insulin receptor kinase is linked to insulin action.  相似文献   

18.
19.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

20.
Ovarian function of nutritionally induced anoestrus cows was evaluated in vivo (Expt 1) and in vitro (Expt 2). In Expt 1, 32 nutritionally induced anoestrous beef cows were divided into four treatment groups receiving: (1) saline infusions at one pulse every 4 h for 13 days (control); (2) 2 micrograms GnRH at one pulse every 4 h (2 micrograms infused in 1.8 ml saline over 5 min) for 13 days (GnRH-4); (3) 2 micrograms GnRH at one pulse every 1 h for 13 days (GnRH-1); and (4) continuous infusion of 2 micrograms GnRH (a total of 2 micrograms in 34 ml h-1) for 13 days (GnRH-C). On the last day of treatment, cows were killed, ovaries were removed and follicular fluid samples (n = 149) were collected. The percentage of cows with luteal activity on day 13 was significantly different (P < 0.01) among treatments (0, 25, 75 and 25% for control, GnRH-4, GnRH-1 and GnRH-C cows, respectively). Owing to the large percentage of ovulatory cows in the GnRH-1 group (n = 6), anovulatory cows (n = 2) were removed from this treatment group for statistical analysis, as were cows with luteal tissue from the GnRH-4 (n = 2) and GnRH-C (n = 2) groups. The numbers of small (1.0-4.9 mm) and medium plus large (> or = 5 mm) follicles were not affected (P > 0.10) by treatment. However, GnRH-4 cows (n = 6) had greater (P < 0.05) concentrations of oestradiol in follicular fluid than did control (n = 8) but not GnRH-1 (n = 6) or GnRH-C (n = 6) cows. Concentrations of insulin-like growth factor I were greater (P < 0.05) in the follicular fluid of GnRH-1 cows than in all other treatment groups. Concentrations of androstenedione and progesterone in follicular fluid were not affected (P > 0.10) by treatment or follicle size. The binding activity of insulin-like growth factor binding proteins was not affected by GnRH treatment. However, the binding activity of insulin-like growth factor binding protein 2, 29-32 kDa and 22 kDa insulin-like growth factor binding proteins were greater (P < 0.05) in small versus medium plus large follicles. In Expt 2, granulosa cells were collected from nutritionally anoestrous cows to determine whether ovarian cells from anoestrous cows have the capacity to respond to insulin-like growth factor I or insulin in vitro. Both insulin-like growth factor I (20 and 200 ng ml-1) and insulin (10, 100 and 1000 ng ml-1) increased (P < 0.05) granulosa cell proliferation and progesterone production. In conclusion, pulsatile infusion of 2 micrograms GnRH (every 1 or 4 h) for 13 days into nutritionally induced anoestrous cows results in increased intrafollicular oestradiol and insulin-like growth factor I concentrations and can stimulate ovulation without markedly affecting concentrations of androstenedione or progesterone, or the binding activity of insulin-like growth factor binding proteins, in follicular fluid. In addition, granulosa cells from nutritionally induced anoestrous cows have the capacity to respond to insulin-like growth factor I and insulin in vitro, indicating that the decrease in trophic factors observed with restricted feeding does not reduce the response of the ovary to insulin-like growth factor I and insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号