首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The covalent binding of complement fragment C3b to zymosan by the action of the alternative-pathway C3 convertase and the reversible binding of several complement proteins (component C5, factor B, beta 1H and properdin) to C3b on zymosan have been investigated. When C3b is deposited on zymosan after activation by a surface-bound C3 convertase, the C3b molecules are deposited in foci around the C3 convertase site, with an average of 30 C3b molecules per site. The association constants of C5, factor B, beta 1H, and properdin for C3b bound to zymosan have been determined. The association constants ranged from 6.5 x 10(-5) M-1 for factor B to 2.9 x 10(7) M-1 for properdin. An approximate stoichiometry of 1 : 1 for C5, factor B, and properdin binding to C3b has been observed. Curvilinear Scatchard plots were observed for beta 1H binding to C3b, with the maximal extrapolated ratio of beta 1H to C3b of 0.32. Physiological amounts of properdin increase by 7-fold the affinity constant for factor B binding to C3b with no alteration in the stoichiometry. Similarly, physiological amounts of factor B increase the affinity constant of properdin to C3b about 4-fold with only a small measured difference in stoichiometry. Competition binding studies and protein modification suggest that C5, factor B, beta 1H, and properdin each bind to a distinct region on C3b.  相似文献   

2.
The vaccinia virus complement control protein (VCP) is an immune evasion protein of vaccinia virus. Previously, VCP has been shown to bind and support inactivation of host complement proteins C3b and C4b and to protect the vaccinia virions from antibody-dependent complement-enhanced neutralization. However, the molecular mechanisms involved in the interaction of VCP with its target proteins C3b and C4b have not yet been elucidated. We have utilized surface plasmon resonance technology to study the interaction of VCP with C3b and C4b. We measured the kinetics of binding of the viral protein to its target proteins and compared it with human complement regulators factor H and sCR1, assessed the influence of immobilization of ligand on the binding kinetics, examined the effect of ionic contacts on these interactions, and sublocalized the binding site on C3b and C4b. Our results indicate that (i) the orientation of the ligand is important for accurate determination of the binding constants, as well as the mechanism of binding; (ii) in contrast to factor H and sCR1, the binding of VCP to C3b and C4b follows a simple 1:1 binding model and does not involve multiple-site interactions as predicted earlier; (iii) VCP has a 4.6-fold higher affinity for C4b than that for C3b, which is also reflected in its factor I cofactor activity; (iv) ionic interactions are important for VCP-C3b and VCP-C4b complex formation; (v) VCP does not bind simultaneously to C3b and C4b; and (vi) the binding site of VCP on C3b and C4b is located in the C3dg and C4c regions, respectively.  相似文献   

3.
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH.  相似文献   

4.
Human C4b-binding protein (C4bp) facilitates the factor I-mediated proteolytic cleavage of the active forms of complement effectors C3b and C4b into their inactive forms. C4bp comprises a disulfide-linked heptamer of alpha-chains with complement (C) regulatory activity and a beta-chain. Each alpha-chain contains 8 short consensus repeat (SCR) domains. Using SCR-deletion mutants of recombinant multimeric C4bp, we identified the domains responsible for the C3b/C4b-binding and C3b/C4b-inactivating cofactor activity. The C4bp mutant with deletion of SCR2 lost the C4b-binding ability, as judged on C3b/C4b-Sepharose binding assaying and ELISA. In contrast, the essential domains for C3b-binding extended more to the C-terminus, exceeding SCR4. Using fluid phase cofactor assaying and deletion mutants of C4bp, SCR2 and 3 were found to be indispensable for C4b cleavage by factor I, and SCR1 contributed to full expression of the factor I-mediated C4b cleaving activity. On the other hand, SCR1, 2, 3, 4, and 5 participated in the factor I-cofactor activity for C3b cleavage, and SCR2, 3, and 4 were absolutely required for C3b inactivation. Thus, different sets of SCRs participate in C3b and C4b inactivation, and the domain repertoire supporting C3b cofactor activity is broader than that supporting C4b inactivation by C4bp and factor I. Furthermore, the domains participating in C3b/C4b binding are not always identical to those responsible for cofactor activity. The necessity of the wide range of SCRs in C3b inactivation compared to C4b inactivation by C4bp and factor I may reflect the physiological properties of C4bp, which is mainly directed to C4b rather than C3b.  相似文献   

5.
The human factor H-related proteins FHR-3 and FHR4 are members of a family of proteins related to the complement factor H. Here, we report that the two proteins bind to the C3d region of complement C3b. The apparent K(A) values for the interactions of FHR-3 and FHR-4 with C3b are 7.5 x 10(6) M(-1) and 2.9 x 10(6) M(-1), respectively. Binding studies performed with C3b-coated pneumococci confirmed the results obtained with the biosensor system. A C-terminal construct of factor H showed similar binding characteristics. The interaction of FHR-3, but not of FHR4, with opsonised pneumococci was inhibited by heparin.  相似文献   

6.
7.
Complement C3 plays an essential role in the opsonization of pathogens in the mammalian complement system, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. To understand the molecular mechanism of C3b deposition on microbes, we characterized two types of C2/factor B homologs (designated TtC2/Bf-1 and TtC2/Bf-2) identified from the horseshoe crab Tachypleus tridentatus. Although the domain architectures of TtC2/Bf-1 and TtC2/Bf-2 were identical to those of mammalian homologs, they contained five-repeated and seven-repeated complement control protein domains at their N-terminal regions, respectively. TtC2/Bf-1 and TtC2/Bf-2 were synthesized and glycosylated in hemocytes and secreted to hemolymph plasma, which existed in a complex with C3 (TtC3), and their activation by microbes was absolutely Mg(2+)-dependent. Flow cytometric analysis revealed that TtC3b deposition was Mg(2+)-dependent on Gram-positive bacteria or fungi, but not on Gram-negative bacteria. Moreover, this analysis demonstrated that Ca(2+)-dependent lectins (C-reactive protein-1 and tachylectin-5A) were required for TtC3b deposition on Gram-positive bacteria, and that a Ca(2+)-independent lectin (Tachypleus plasma lectin-1) was definitely indispensable for TtC3b deposition on fungi. In contrast, a horseshoe crab lipopolysaccharide-sensitive protease factor C was necessary and sufficient to deposit TtC3b on Gram-negative bacteria. We conclude that plasma lectins and factor C play key roles in microbe-specific TtC3b deposition in a C2/factor B-dependent or -independent manner.  相似文献   

8.
We identified on the membrane of mouse spleen cells a polypeptide of Mr 190,000 (S190), with binding affinity for the mouse third component of the complement system (C3). S190, purified by affinity chromatography on C3-Sepharose, has properties resembling those of the human C3 receptor type 1 (CR1). Thus, S190, like CR1, served as a cofactor for the C3b inactivator (I)-mediated cleavage of fluid-phase C3b into iC3b, and had cofactor activity comparable to that of serum factor H (H). S190 also acted as a cofactor for the cleavages of membrane-bound C3b or membrane-bound iC3b into C3c (Mr 140,000) and C3dg (Mr 40,000) by serum factor I. As is the case with CR1, the specific activity of S190 for the cleavages leading to C3c-C3dg formation was approximately 100-fold greater than that of H. We therefore conclude that S190 and CR1 are analogous proteins.  相似文献   

9.
Alternative complement pathway C3 convertase formation involves the cleavage of C3b-associated factor B into fragments Ba and Bb. Whereas Bb, in complex with C3b, has proteolytic specificity toward native C3, the function of the Ba moiety in the formation and/or decay of alternative complement pathway C3 convertase is uncertain. Therefore, we have examined the effect of purified Ba fragment on both fluid-phase and surface-bound enzymatic activity and showed that whereas Ba could inhibit the rate of C3 convertase formation, the rate of intrinsic decay remained unaffected. A specific, metal ion-independent interaction between Ba and C3b was subsequently demonstrated by use of the cross-linking reagent dithiobis(succinimidyl propionate). When cell-associated 125I-B was activated by D, the dissociation of Bb fragment displayed simple first-order kinetics with a half-time of 2.4 min, this value being in reasonable agreement with the hemolytically determined decay rate of 1.8 min. In contrast, most of the Ba fragment undergoes rapid dissociation, but there is also evidence to suggest the establishment of a new equilibrium due to the ability of Ba to rebind to C3b. Cumulatively, these data are consistent with a model in which the attachment of intact B to C3b is mediated by two points of contact, one being in the Ba domain and the other in the Bb domain. Due to avidity effects, each of these interactions could be of relatively low intrinsic affinity, and the characteristic unidirectionality of alternative complement pathway C3 convertase decay may simply result from the low intrinsic association of "univalent" Bb for the C3b subunit.  相似文献   

10.
We have previously demonstrated that the alpha'-chain of human activated form of the fourth (C4b) and third (C3b) component of C are cleaved by plasma or serum from vertebrate species spanning through 300,000,000 yr of evolution yielding fragments identical with those obtained with human plasma. In this study, we investigated the molecular basis of this reaction. We chose barred sand bass plasma because this is the most primitive species analyzed possessing these activities. Barred sand bass plasma proteins were separated on a Sephadex G-200 column and the eluted samples analyzed for C4b and C3b cleavage. Individual fractions were inactive, but degradation was obtained when proteins of 380 and 155 kDa were combined. In contrast to the human regulatory proteins, the sand bass proteins require Ca2+ ions. K76COOH, an inhibitor of human factor I, inhibited the function of the 155-kDa but not of the 380 kDa-fraction. Thus it appears that the 155-kDa fraction functions as the C4b/C3b cleaving enzyme (I) and the 380-kDa material as its cofactor. Further purification of the 380-kDa fraction yielded a protein that by SDS-PAGE consisted of two noncovalently linked subunits of 110 and 42 kDa at a molecular ratio of 2:1. These two chains were antigenically distinct, and constitute domains of the same protein. The 110-kDa peptide binds C4b and not C3b but it fully expresses the cofactor function for the 155-kDa fraction on the cleavage of both C4b and C3b. Limited tryptic digestion of the 110-kDa domain demonstrated C4b binding activity in fragments of 34, 25, and 23 kDa. The activity of the 34-kDa fragment was the same as that of the undigested protein. Comparison of the amino acid composition of the barred sand bass cofactor and of human C4bp shows similar high content of cysteine and proline but not of tryptophan. It differs from human factor H in cysteine, serine, proline, and tryptophan. These studies indicate that regulatory proteins for the C4b and C3b C fragments may have appeared very early phylogenetically.  相似文献   

11.
Complement component C3b has been purified from human, rabbit and bovine serum by affinity chromatography on human factor H-Sepharose after preliminary fractionation by poly(ethylene glycol) and DEAE-Sepharose. The yields are high (35--40%) and the whole process is rapid (3 days). Binding of C3b to factor H-Sepharose is equimolar, has a sharp optimum pH at 7.6 and is quite sensitive to ionic strength.  相似文献   

12.
Factor H (fH) restricts activation of the alternative pathway of complement at the level of C3, both in the fluid phase and on self-structures, but allows the activation to proceed on foreign structures. To study the interactions between fH and C3b we used surface plasmon resonance analysis (Biacore(R)) and eight recombinantly expressed fH constructs containing fragments of the 20 short consensus repeat domains (SCRs) of fH. We analyzed the binding of these constructs to C3b and its cleavage products C3c and C3d. Three binding sites for C3b were found on fH. Site 1 was localized to the five amino-terminal SCRs (SCR1-5), and its reciprocal binding site on C3b was found to be lost upon the cleavage of C3b to C3c and C3d. Site 2 on fH was localized by exclusion probably within or near SCRs 12-14 (fragment SCR8-20 bound to C3b, C3c, and C3d; SCR8-11 did not bind to C3b at all; and SCR15-20 bound only to the C3d part of C3b). Site 3 on fH for C3b was localized to the carboxyl-terminal SCRs 19-20, and its reciprocal binding site was mapped to the C3d part of C3b. In conclusion, we confirmed and mapped three binding sites on fH for C3b and demonstrated that the three binding sites on fH interact with distinct sites on C3b. Multiple reciprocal interactions between C3b and fH can provide a basis for the different reactivity of the alternative pathway with different target structures.  相似文献   

13.
Phosphorylation of complement factor C3 in vivo.   总被引:1,自引:0,他引:1       下载免费PDF全文
Complement factor C3, the central protein of the complement system, was found to be phosphorylated both in EDTA- and heparin-anticoagulated whole blood and in coagulating blood. Complement S protein (vitronectin) was also found to be phosphorylated under these conditions. Further, purified C3 was found to be a phosphoprotein in vivo, containing 0.15 mol of alkali-labile phosphate/mol of protein. The ATP concentration in plasma was measured and found to be about 2 microM.  相似文献   

14.
15.
Various nucleophilic agents (acceptors) react with thiolester group of nascent activated fragment (C3b) of the third complement component. The C3b-acceptors binding prevents transformation of C3 convertase to C5 convertase and results in inhibition of the cell-target lysis. A convenient method of monitoring the EAC142 to EAC1423 transformation was elaborated. Character of the inhibition suggests that the covalent binding follows a stage of the reversible C3b-acceptor complex formation. The method allows to determine the maximum of inhibition of the C5 convertase formation and the dissociation constant of the reversible C3b-acceptor complex, which reflects the C3b affinity to this acceptor.  相似文献   

16.
C5 convertase of the alternative C pathway is a complex enzyme consisting of three C fragments--one molecule of a major fragment of factor B (Bb) and two molecules of a major fragment of C3 (C3b). Within this C3bBbC3b complex, the first C3b binds covalently to the target surface, and Bb, which bears a catalytic site, binds noncovalently to the first C3b. In the present investigation, we studied the nature of the convertase that is assembled on E surfaces and obtained evidence that the second C3b binds directly to the alpha'-chain of the first through an ester bond rather than to the target surface. Thus, the alternative pathway C5 convertase could be described as a trimolecular complex in which Bb binds noncovalently to a covalently linked C3b dimer. We also obtained evidence that not only the second C3b but also the first C3b participates in binding C5, that is, covalently-linked C3b dimer acts as a substrate-binding site. Because of this two-site binding, the convertase has a much higher affinity for C5 than the surrounding monomeric C3b molecules. Based on this evidence, a new model of the alternative pathway C5 convertase is proposed. Covalent association of two subunits and the bivalent binding of the substrate are then common properties of the alternative and classical pathway C5 convertases.  相似文献   

17.
C5 convertase of the classical complement pathway is a trimolecular protein complex consisting of C4b, C2a, and C3b. In the complex there is an ester bond between C3b and C4b. We analyzed the C5 convertase formed on erythrocytes and localized the covalent binding site of C3b to a small region on C4b. The covalently linked C4b.C3b complex was purified from a detergent extract of the erythrocytes and digested with lysyl endopeptidase. An Mr 17,000 fragment containing the ester linkage between C4b and C3b was purified and its amino-terminal sequence was examined. Two amino acids were obtained at each cycle and identified with those in the sequences of C3 and C4. The sequence derived from C3 corresponded to the thioester region. The sequence derived from C4 started at Ala-1186. Alkali treatment of the fragment yielded an Mr 7,000 peptide derived from C4, which thus appeared to span the region of C4 from Ala-1186 to Lys-1259. Therefore, the covalent C3b-binding site on C4b is located within a 74-residue region of the primary structure. This finding supports the notion that after cleavage of C3 by the C4b2a complex, the covalent binding of metastable C3b to C4b is a specific reaction to form a trimolecular complex with a defined quaternary structure.  相似文献   

18.
Summary The present study was performed to evaluate the usefulness of 125I-labelled C3b bound to constituents of sheep erythrocyte membranes (125I-C3b-OR) for the demonstration of C3b receptor activity of resident peritoneal macrophages at the electron-microscopical level. The binding of 125I-C3b-OR to the cells was studied in biochemical and autoradiographical experiments. The amount of cell-associated radioactivity was dependent on the presence of unlabelled aggregated C3b (AC3b) in a dose-response manner, and diminished strongly after functional inactivation of the receptor by trypsin treatment. In addition, it was found that at 4° C most of the label was associated with the cell surface. However, when the incubation temperature was raised from 4° C to 37° C, internalization of the label was observed. These results indicate that 125I-C3b-OR is a suitable agent for further characterization of the C3b receptor-function of resident peritoneal macrophages at the electron-microscopical level.  相似文献   

19.
Factor B is a zymogen that carries the catalytic site of the complement alternative pathway C3 convertase. During convertase assembly, factor B associates with C3b and Mg(2+) forming a pro-convertase C3bB(Mg(2+)) that is cleaved at a single factor B site by factor D. In free factor B, a pair of salt bridges binds the Arg(234) side chain to Glu(446) and to Glu(207), forming a double latch structure that sequesters the scissile bond (between Arg(234) and Lys(235)) and minimizes its unproductive cleavage. It is unknown how the double latch is released in the pro-convertase. Here, we introduce single amino acid substitutions into factor B that preclude one or both of the Arg(234) salt bridges, and we examine their impact on several different pro-convertase complexes. Our results indicate that loss of the Arg(234)-Glu(446) salt bridge partially stabilizes C3bB(Mg(2+)). Loss of the Arg(234)-Glu(207) salt bridge has lesser effects. We propose that when factor B first associates with C3b, it bears two intact Arg(234) salt bridges. The complex rapidly dissociates unless the Arg(234)-Glu(446) salt bridge is released whereupon conformational changes occur that activate the metal ion-dependent adhesion site and partially stabilize the complex. The remaining salt bridge is then released, exposing the scissile bond and permitting factor D cleavage.  相似文献   

20.
The present study was performed to evaluate the usefulness of 125I-labelled C3b bound to constituents of sheep erythrocyte membranes (125I-C3b-OR) for the demonstration of C3b receptor activity of resident peritoneal macrophages at the electron-microscopical level. The binding of 125I-C3b-OR to the cells was studied in biochemical and autoradiographical experiments. The amount of cell-associated radioactivity was dependent on the presence of unlabelled aggregated C3b (AC3b) in a dose-response manner, and diminished strongly after functional inactivation of the receptor by trypsin treatment. In addition, it was found that at 4 degrees C most of the label was associated with the cell surface. However, when the incubation temperature was raised from 4 degrees C to 37 degrees C, internalization of the label was observed. These results indicate that 125I-C3b-OR is a suitable agent for further characterization of the C3b receptor-function of resident peritoneal macrophages at the electron-microscopical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号