首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics.  相似文献   

2.
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as “non-pancreatic”, “synovial”, “platelet-type”, “inflammatory”, and “bactericidal” sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.  相似文献   

3.
Protein kinase C (PKC) is a family of serine/threonine kinases involved in various signal transduction pathways. We investigated the roles of PKC in the regulation of group IIA secreted phospholipase A2 (sPLA2-IIA) expression in cytokine-stimulated rat fibroblastic 3Y1 cells. Here we show that the induction of sPLA2-IIA by proinflammatory cytokines was under the control of both classical cPKCα and atypical aPKCλ/ι pathways by using PKC inhibitors, a PKC activator, and PKC knockdowns. Treatment of 3Y1 cells with PKC selective inhibitors having broad specificity, such as chelerythrine chloride and GF109203X, blocked IL-1β/TNFα-dependent induction of sPLA2-IIA protein in a dose-dependent manner. Treatment with the PKC activator phorbol 12-myristate 13-acetate (PMA), which activates cPKC and novel nPKC isoforms, markedly attenuated the cytokine-dependent induction of sPLA2-IIA expression. In comparison, 24-h pretreatment with PMA, which down-regulates these PKC isoforms, markedly enhanced sPLA2-IIA expression. Results with short hairpin RNA (shRNA)-mediated knockdown of PKC isoforms revealed that the cytokine-induced sPLA2-IIA expression was markedly enhanced in cPKCα knockdown cells compared to those in replicate control cells. In contrast, knockdown of the aPKCλ/ι isoform reduced the cytokine-induced expression of sPLA2-IIA. These results suggest that the aPKCλ/ι pathway is required for the induction of sPLA2-IIA expression and that the cPKCα pathway acts as a negative regulator of sPLA2-IIA expression in cytokine-stimulated rat fibroblasts.  相似文献   

4.
Secretory phospholipase A2 (sPLA2s) are small secreted proteins (14–18 kDa) and require submillimolar levels of Ca2+ for liberating arachidonic acid from cell membrane lipids. In addition to the enzymatic function, sPLA2 can exert various biological responses by binding to specific receptors. Physiologically, sPLA2s play important roles on the neurotransmission in the central nervous system and the neuritogenesis in the peripheral nervous system. Pathologically, sPLA2s are involved in the neurodegenerative diseases (e.g., Alzheimer’s disease) and cerebrovascular diseases (e.g., stoke). The common pathology (e.g., neuronal apoptosis) of Alzheimer’s disease and stroke coexists in the mixed dementia, suggesting common pathogenic mechanisms of the two neurological diseases. Among mammalian sPLA2s, sPLA2-IB and sPLA2-IIA induce neuronal apoptosis in rat cortical neurons. The excess influx of calcium into neurons via l-type voltage-dependent Ca2+ channels mediates the two sPLA2-induced apoptosis. The elevated concentration of intracellular calcium activates PKC, MAPK and cytosolic PLA2. Moreover, it is linked with the production of reactive oxygen species and apoptosis through activation of the superoxide producing enzyme NADPH oxidase. NADPH oxidase is involved in the neurotoxicity of amyloid β peptide, which impairs synaptic plasticity long before its deposition in the form of amyloid plaques of Alzheimer’s disease. In turn, reactive oxygen species from NADPH oxidase can stimulate ERK1/2 phosphorylation and activation of cPLA2 and result in a release of arachidonic acid. sPLA2 is up-regulated in both Alzheimer’s disease and cerebrovascular disease, suggesting the involvement of sPLA2 in the common pathogenic mechanisms of the two diseases. Thus, our review presents evidences for pathophysiological roles of sPLA2 in the central nervous system and neurological diseases.  相似文献   

5.
Neuroinflammation is involved in various central nervous system (CNS) disorders, including brain infections, ischemia, trauma, stroke, and degenerative CNS diseases. In the CNS inflammation, secretory phospholipase A2-IIA (sPLA2-IIA) acts as a mediator, resulting in the generation of the precursors of pro-inflammatory lipid mediators, such as prostaglandins (PGs) and leukotrienes (LTs). However, the role of sPLA2-IIA in neuroinflammation is more complicated and remains unclear yet. In the present study, we investigated the effect of sPLA2-IIA inhibition by specific inhibitor SC-215 on the inflammation in LPS-induced mice cerebral cortex and primary astrocytes. Our results showed that the inhibition of sPLA2-IIA alleviated the release of PGE2 by suppressing the activation of ERK1/2, cPLA2α, COX-2 and mPGES-1. These findings demonstrated that sPLA2-IIA showed the potential to regulate the neuroinflammation in vivo and in vitro, indicating that sPLA2-IIA might be a novel target for the treatment of acute neuroinflammation.  相似文献   

6.
Therapy with interleukin-2 (IL-2) induces remissions in some forms of cancer. This treatment however, is accompanied by side-effects which, in part, may be mediated by the formation of eicosanoids and plateletactivating factor. We investigated the systemic release of phospholipase A2 (PLA2), a rate-limiting enzyme in the formation of these lipid mediators, in patients receiving IL-2. In a pilot study of 4 patients we observed an increase in PLA2 activity in serial plasma samples obtained during the first day after a bolus infusion of IL-2, which increase closely correlated with that of antigen levels of secretory phospholipase A2 (sPLA2) as measured by enzyme-linked immunosorbent assay (r=0.92;P<0.001). In 20 patients, receiving 12×106–18×106 IU IL-2/m2, we then investigated the course of antigenic levels of sPLA2 in relation to those of the cytokines tumour necrosis factor (TNF) and interleukin-6 (IL-6) (both cytokines may induce sPLA2 in vivo). From 4 h on, sPLA2 levels significantly increased, reaching a peak 24 h after the IL-2 infusion. Subsequent IL-2 infusions even induced a further increase of sPLA2. This increase of sPLA2 was presumably not due to a direct effect of IL-2 on, for example, hepatocytes, since this cytokine, in contrast to IL-1, IL-6, TNF and interferon , was not able to induce the synthesis of sPLA2 by Hep G2 cells in vitro. Consistent with this, plasma levels of TNF and IL-6 in the patients rose, reaching peak levels before a zenith of sPLA2 occurred, i.e at 2 h and 4 h after the start of the IL-2 infusion respectively. sPLA2 levels significantly correlated with the development of the side-effects increase in body weight (r=0.49;P<0.0001) and decrease in mean arterial blood pressure (r=0.40;P<0.0001). Moreover, maximum sPLA2 levels induced by IL-2 were higher in patients who had progressive disease after therapy than in patients who had stable disease or a partial response.  相似文献   

7.
The purpose of this study was to determine the roles of calcium-dependent phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2) in thapsigargin-induced membrane susceptibility to secretory phospholipase A2 (sPLA2) and programmed cell death. 3H-arachidonic acid release was observed in the presence of thapsigargin. This release was inhibited partially by an inhibitor of iPLA2 (BEL) and completely by an inhibitor of both cPLA2 and iPLA2 (MAFP) suggesting that these enzymes were active during apoptosis. The process of cell death did not require the activity of either enzyme since neither inhibitor impeded the progression of apoptosis. However, both inhibitors increased the susceptibility of the membrane to sPLA2 in the presence of thapsigargin. In the case of BEL, this effect appeared to involve direct induction of apoptosis in a sub-population of the cells independent of the action of iPLA2. In conclusion, the results suggested that cPLA2 and iPLA2 are active during thapsigargin-induced apoptosis in S49 cells and that cPLA2 tempers the tendency of the cells to become susceptible to sPLA2 during apoptosis.  相似文献   

8.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA2 enzymes belong to the secreted PLA2 (sPLA2) family, which consists of low molecular mass, Ca2+-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA2 research field toward deciphering their in vivo functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA2s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA2 proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring in vivo. It is now obvious that individual sPLA2s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA2s in the past few years.  相似文献   

9.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

10.
Bilirubin is a powerful antioxidant that suppresses the inflammatory process. However its interaction with proinflammatory PLA2 enzyme is not known. Inhibition of several secretory phospholipase A2 (sPLA2) enzyme activities by bilirubin was studied using 14C-oleate labeled Escherichia coli as substrate. Bilirubin inhibits purified sPLA2 enzyme from Vipera russellii and Naja naja venom and partially purified sPLA2 enzymes from human ascitic fluid, pleural fluid and normal serum in a dose dependent manner. IC50 values calculated for these enzymes ranges from 1.75 to 10.5 μM. Inflammatory human sPLA2 enzymes are more sensitive to inhibition by bilirubin than snake venom sPLA2s. Inhibition of sPLA2 activity by bilirubin is independent of calcium concentration. Increasing substrate concentration (upto 180 nmol) did not relieve the inhibition of sPLA2 by bilirubin and it is irreversible. Bilirubin quenched the relative fluorescence intensity of sPLA2 in a dose dependent manner in the same concentration range at which in vitro sPLA2 inhibition was observed. In the presence of bilirubin, apparent shift in the far UV-CD spectra of sPLA2 was observed, indicating a direct interaction with the enzyme. Inhibition of sPLA2 induced mouse paw edema by bilirubin confirms its sPLA2 inhibitory activity in vivo also. These findings indicate that inhibition of sPLA2 by bilirubin is mediated by direct interaction with the enzyme and bilirubin may act as an endogenous regulator of sPLA2 enzyme activity.  相似文献   

11.
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A2A adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A2A adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A2A agonist CGS21680 (0.2 μg/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 ± 1.8% and 52.3 ± 2.8% respectively; p < 0.05), with no difference com-pared to the Late group (40.1 ± 6.1%). Apoptosis regressi-on was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFα was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A2A adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

12.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

13.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We investigated the cardioprotective mechanism of IMD1-53 in the in vivo rat model of myocardial ischemia/reperfusion (I/R) injury and in vitro primary neonatal cardiomyocyte model of hypoxia/reoxygenation (H/R). Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride staining. Cardiomyocyte viability was determined by trypan blue staining, cell injury by lactate dehydrogenase (LDH) leakage, and cardiomyocyte apoptosis by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assay, Hoechst staining, gel electrophoresis and caspase 3 activity. The translocation of mitochondrial cytochrome c of myocardia and expression of apoptosis-related factors Bcl-2 and Bax, phosphorylated Akt and phosphorylated GSK-3β were determined by western blot analysis. IMD1-53 (20 nmol/kg) limited the myocardial infarct size in rats with I/R; the infarct size was decreased by 54%, the apoptotic index by 30%, and caspase 3 activity by 32%; and the translocation of cytochrome c from mitochondria to cytosol was attenuated. IMD1-53 increased the mRNA and protein expression of Bcl-2 and ratio of Bcl-2 to Bax by 81 and 261%, respectively. IMD1-53 (1 × 10−7 mol/L) inhibited the H/R effect in cardiomyocytes by reducing cell death by 43% and LDH leakage by 16%; diminishing cellular apoptosis; decreasing caspase 3 activity by 50%; and increasing the phosphorylated Akt and GSK-3β by 41 and 90%, respectively. The cytoprotection of IMD1-53 was abolished with LY294002, a PI3K inhibitor. In conclusion, IMD1-53 exerts cardioprotective effect against myocardial I/R injury through the activation of the Akt/GSK-3β signaling pathway to inhibit mitochondria-mediated myocardial apoptosis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
As one of its primary physiological functions, sPLA2-IIA appears to act as an antibacterial agent. In particular, sPLA2-IIA shows high activity towards Gram-positive bacteria such as Staphylococcus aureus (S. aureus). This antibacterial activity results from the preference of the enzyme towards membranes enriched in anionic lipids, which is a common feature of bacterial membranes. An intriguing aspect observed in a variety of bacterial membranes is the presence of a broad but cooperative lipid chain melting event where the lipids in the membrane transition from a solid-ordered (so) into a liquid-disordered (ld) state close to physiological temperatures. It is known that the enzyme is sensitive to the level of lipid packing, which changes sharply between the so and the ld states. Therefore, it would be expected that the enzyme activity is regulated by the bacterial membrane thermotropic behavior. We determine by FTIR the thermotropic lipid chain melting behavior of S. aureus and find that the activity of sPLA2-IIA drops sharply in the so state. The activity of the enzyme is also evaluated in terms of its effects on cell viability, showing that cell survival increases when the bacterial membrane is in the so state during enzyme exposure. These results point to a mechanism by which bacteria can develop increased resistance towards antibacterial agents that act on the membrane through a cooperative increase in the order of the lipid chains. These results show that the physical behavior of the bacterial membrane can play an important role in regulating physiological function in an in vivo system.  相似文献   

15.
Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s (sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune suppression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia, and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we overview current understanding of the properties and functions of these sPLA2s and their underlying lipid pathways in vivo.  相似文献   

16.
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.  相似文献   

17.
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up‐regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose‐tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF‐Akt (protein kinase B)‐mammalian target of rapamycin (mTOR)‐NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by in vivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose‐induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF‐Akt‐mTOR‐NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers.  相似文献   

18.
Secretory phospholipase A2 (sPLA2) hydrolyzes phosphatidylcholines (PC) within lipid bilayers to produce lyso-PC and a fatty acid, which can act as signaling molecule in biological membranes. The activity of sPLA2 depends on the membrane structure. Bilayer defects, curvature, and gel-fluid micro-heterogeneity are known to activate sPLA2. Here, we investigate if liquid-liquid immiscibility within model membranes is sufficient for sPLA2 activation. The onset of the hydrolytic activity of cobra-venom sPLA2 towards mixed monolayers of dimyristoyl-PC (DMPC)/cholesterol 2:1 (mol/mol) has been determined using infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated (PM-) IRRAS. The lag phase of sPLA2 activity increases exponentially with rising surface pressures starting at 12 mN/m. This indicates that enzyme activation is hampered at higher surface pressures. Below 12 mN/m, no lag phase is observed, and sPLA2 is efficiently activated. The surface pressure that is critical for sPLA2 activation correlates with the critical miscibility pressure according to the phase diagram of DMPC and cholesterol. Thus, coexisting, liquid-phase domains provide sufficient boundaries to activate sPLA2. Moreover, liquid-liquid immiscibility is an activating mechanism for sPLA2 that also applies to biological membranes under physiological conditions because the corresponding bilayer structure is associated with that of membrane rafts.  相似文献   

19.
Objective  Postconditioning protects the heart against ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. However, the molecular mechanism by which postconditioning suppresses apoptosis remains to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) has been demonstrated to possess the ability to protect cardiomyocytes from apoptosis induced by ischemia/reperfusion. It is not yet clear as to whether ARC contributes to the inhibitory effect of postconditioning against cardiomyocyte apoptosis. Methods  The cultured cardiomyocytes from 1-day old male Sprague–Dawley rats were exposed to 3 h hypoxia followed by 3 h of reoxygenation. Cells were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia before 3 h of reoxygenation. Results  Hypoxia/reoxygenation led to a decrease of endogenous ARC protein levels. In contrast, postconditioning could block the reduction of endogenous ARC protein levels. Interestingly, inhibition of endogenous ARC expression by ARC antisense oligodeoxynucleotides reduced the inhibitory effect of postconditioning against apoptosis. Furthermore, our data showed that postconditioning suppressed the loss of mitochondrial membrane potential, Bax activation and the release of mitochondrial cytochrome c to cytosol. However, these inhibitory effects of postconditioning disappeared upon knockdown of endogenous ARC. Conclusion  Our data for the first time demonstrate that ARC plays an essential role in mediating the cardioprotective effect of postconditioning against apoptosis initiated by the mitochondrial pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号