首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ongoing increase in atmospheric CO2 concentration ([CO2]) can potentially alter litter decomposition rates by changing: (i) the litter quality of individual species, (ii) allocation patterns of individual species, (iii) the species composition of ecosystems (which could alter ecosystem‐level litter quality and allocation), (iv) patterns of soil moisture, and (v) the composition and size of microbial communities. To determine the relative importance of these mechanisms in a California annual grassland, we created four mixtures of litter that differed in species composition (the annual legume Lotus wrangelianus Fischer & C. Meyer comprised either 10% or 40% of the initial mass) and atmospheric [CO2] during growth (ambient or double‐ambient). These mixtures decomposed for 33 weeks at three positions (above, on, and below the soil surface) in four types of grassland microcosms (fertilized and unfertilized microcosms exposed to elevated or ambient [CO2]) and at a common field site. Initially, legume‐rich litter mixtures had higher nitrogen concentrations ([N]) than legume‐poor mixtures. In most positions and environments, the different litter mixtures decomposed at approximately the same rate. Fertilization and CO2 enrichment of microcosms had no effect on mass loss of litter within them. However, mass loss was strongly related to litter position in both microcosms and the field. Nitrogen dynamics of litter were significantly related to the initial [N] of litter on the soil surface, but not in other positions. We conclude that changes in allocation patterns and species composition are likely to be the dominant mechanisms through which ecosystem‐level decomposition rates respond to increasing atmospheric [CO2].  相似文献   

2.
The effects of elevated atmospheric CO2 (475 μL L?1) on in situ decomposition of plant litter and animal faecal material were studied over 2 years in a free air CO2 enrichment (FACE) facility. The pasture was grazed by sheep and contained a mixture of C3 and C4 grasses, legumes and forbs. There was no effect of elevated CO2 on decomposition within plant species but marked differences between species with faster decomposition in dicots; a group that increased in abundance at elevated CO2. Decomposition of mixed herbage root material occurred at a similar rate to that of leaf litter suggesting that any CO2‐induced increase in carbon allocation to roots would not reduce rates of decomposition. Sheep faeces resulting from a ‘high‐CO2 diet’ decomposed significantly slower during summer but not during winter. The overall outcome of these experiments were explored using scenarios that took account of changes in botanical composition, allocation to roots and the presence of herbivores. In the absence of herbivores, elevated CO2 led to a 15% increase in the rate of mass loss and an 18% increase in the rate of nitrogen (N) release. In the presence of herbivores, these effects were partially removed (11% increase in rate of mass loss and 9% decrease in N release rate) because of the recycling occurring through the animals in the form of faeces.  相似文献   

3.
Artificial turves composed of 7 chalk grassland species (Festuca ovina L.; Briza media L.; Bromopsis erecta (Hudson) Fourr.; Plantago media L.; Sanguisorba minor Scop.; Anthyllis vulneraria L. and Lotus corniculatus L.) were grown from seed and exposed to two seasons of elevated (600 μmol mol–1) and ambient (340 μmol mol–1) CO2 concentrations in free air CO2 enrichment (ETH-FACE, Zurich). The turves were clipped regularly to a height of 5 cm and assessed for above ground biomass production and relative abundance based on accumulated clipped dry biomass as well as by point quadrat recording. Below ground biomass production was assessed with root in-growth bags during the second season of growth. Increases in total biomass (> 30%) were noted in elevated CO2, but the differences did not become significant until the second season of growth. Individual species’ biomass varied in response to elevated CO2, with significant increases in biomass in elevated CO2 turves for both legume species, and no significant CO2 effect on S. minor or P. media. An initial positive CO2 effect on biomass of combined grass species was reversed by the end of the experiment with less biomass and a significantly smaller proportion of total biomass present in elevated CO2, which was attributed primarily to changes in proportion of F. ovina. Species relative abundance was significantly affected by elevated CO2 in the final 4 of the 6 clip events, with the legume species increasing in proportion at the expense of the other species, particularly the grasses. Root length and dry weight were both significantly increased in elevated CO2 (77% and 89%, respectively), and these increases were greater than increases in shoot biomass (36%) from the same period. Species responses to elevated CO2, within the model community, were not consistent with predictions made from data on individual species, leading to the conclusion that responses to elevated CO2, at the community level, and species within the community level, are the result of direct physiological effects and indirect competitive effects. These conclusions are discussed with respect to the ecological responses of natural communities, and the chalk grassland community in particular, to elevated CO2.  相似文献   

4.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

5.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

6.
Our limited understanding of terrestrial ecosystem responses to elevated CO2 is a major constraint on predicting the impacts of climate change. A change in botanical composition has been identified as a key factor in the CO2 response with profound implications for ecosystem services such as plant production and soil carbon storage. In temperate grasslands, there is a strong consensus that elevated CO2 will result in a greater physiological stimulus to growth in legumes and to a lesser extent forbs, compared with C3 grasses, and the presumption this will lead in turn to a greater proportion of these functional groups in the plant community. However, this view is based on data mainly collected in experiments of three or less years in duration and not in experiments where defoliation has been by grazing animals. Grazing is, however, the most common management of grasslands and known in itself to influence botanical composition. In a long‐term Free Air Carbon Dioxide Enrichment (FACE) experiment in a temperate grassland managed with grazing animals (sheep), we found the response to elevated CO2 in plant community composition in the first 5 years was consistent with the expectation of increased proportions of legumes and forbs. However, in the longer term, these differences diminished so that the proportions of grasses, legumes and forbs were the same under both ambient and elevated CO2. Analysis of vegetation before and after each grazing event showed there was a sustained disproportionately greater removal (‘apparent selection’) of legumes and forbs by the grazing animals. This bias in removal was greater under elevated CO2 than ambient CO2. This is consistent with sustained faster growth rates of legumes and forbs under elevated CO2 being countered by selective defoliation, and so leading to little difference in community composition.  相似文献   

7.
Few studies have investigated the effects of elevated CO2 on the physiology of symbiotic N2-fixing trees. Tree species grown in low N soils at elevated CO2 generally show a decline in photosynthetic capacity over time relative to ambient CO2 controls. This negative adjustment may be due to a reallocation of leaf N away from the photosynthetic apparatus, allowing for more efficient use of limiting N. We investigated the effect of twice ambient CO2 on net CO2 assimilation (A), photosynthetic capacity, leaf dark respiration, and leaf N content of N2-fixing Alnus glutinosa (black alder) grown in field open top chambers in a low N soil for 160 d. At growth CO2, A was always greater in elevated compared to ambient CO2 plants. Late season A vs. internal leaf p(CO2) response curves indicated no negative adjustment of photosynthesis in elevated CO2 plants. Rather, elevated CO2 plants had 16% greater maximum rate of CO2 fixation by Rubisco. Leaf dark respiration was greater at elevated CO2 on an area basis, but unaffected by CO2 on a mass or N basis. In elevated CO2 plants, leaf N content (μg N cm?2) increased 50% between Julian Date 208 and 264. Leaf N content showed little seasonal change in ambient CO2 plants. A single point acetylene reduction assay of detached, nodulated root segments indicated a 46% increase in specific nitrogenase activity in elevated compared to ambient CO2 plants. Our results suggest that N2-fixing trees will be able to maintain high A with minimal negative adjustment of photosynthetic capacity following prolonged exposure to elevated CO2 on N-poor soils.  相似文献   

8.
Field-grown spring wheat (Triticum aestivum L. cv. Dragon) was exposed to ambient and elevated CO2 concentrations (1.5 and 2 times ambient) in open-top chambers. Contents of non-structural carbohydrates were analysed enzymatically in leaves, stems and ears six times during the growing season. The impact of elevated CO2 on wheat carbohydrates was non-significant in most harvests. However, differences in the carbohydrate contents due to elevated CO2 were found in all plant compartments. Before anthesis, at growth stage (GS) 30 (the stem is 1 cm to the shoot apex), the plants grown in elevated CO2 contained significantly more water soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in the leaves in comparison with the plants grown in ambient CO2. It is hypothesised that the plants from the treatments with elevated CO2 were sink-limited at GS30. After anthesis, the leaf WSC and TNC contents of the plants from elevated CO2 started to decline earlier than those of the plants from ambient CO2. This may indicate that the leaves of plants grown in the chambers with elevated CO2 senesced earlier. Elevated CO2 accelerated grain development: 2 weeks after anthesis, the plants grown in elevated CO2 contained significantly more starch and significantly less fructans in the ears compared to the plants grown in ambient CO2. Elevated CO2 had no effect on ear starch and TNC contents at the final harvest. Increasing the CO2 concentration from 360 to 520 μmol mol?1 had a larger effect on wheat non-structural carbohydrates than the further increase from 520 to 680 μmol mol?1. The results are discussed in relation to the effects of elevated CO2 on yield and yield components.  相似文献   

9.
An important question with respect to plant performance in future climatic scenarios is whether the offspring of mature trees that have experienced lifelong exposure to elevated [CO2] show altered physiological responses to elevated [CO2] compared with those originating from current ambient CO2 concentrations. To investigate this question, acorns were collected from two seed sources, denoted as ‘control’ and ‘spring’, from Quercus ilex mother trees grown at ambient (36 Pa) and at about twice ambient CO2 concentrations, respectively, close to a natural CO2 spring, Laiatico, central Italy. The seedlings were raised for 8 months under controlled conditions at ambient and elevated [CO2] in a reciprocal experimental design and were used for the determination of biomass, photosynthesis and foliar carbohydrate concentrations, as well as the accumulation of structural biomass and lignin during leaf maturation. Under ambient [CO2], biomass and foliar carbon acquisition in control progeny were not significantly different from spring progeny. However, under elevated [CO2], spring seedlings showed less CO2 acclimation than control seedlings but no significant differences in non‐structural carbohydrate concentrations and structural biomass per unit leaf dry mass. Developmental lignin accumulation in leaves was delayed under elevated [CO2] compared with ambient [CO2], but only in control progeny. Under elevated [CO2], whole‐plant biomass, leaf area and stem diameter were significantly increased in Quercus ilex seedlings from both seed sources but with a higher stimulation of above‐ground biomass in spring than in control seedlings and a higher stimulation of below‐ground biomass in control seedlings. These results indicate that life history and/or progeny may determine the species‐specific CO2 response and suggest that positive CO2 acclimation is possible.  相似文献   

10.
We used the New Zealand grazed pasture free air CO2 enrichment experiment to determine the effects of elevated CO2 on earthworm (Aporrectodea caliginosa and Lumbricus rubellus) cast production and mineral nitrogen (N) concentration over a 5‐week period in the spring. Elevated CO2 did not affect earthworm biomass or the amount of cast material produced. However, cast mineral N concentrations were 18% lower, resulting in 27% less mineral N being deposited on the soil surface under elevated CO2. An analysis of the earthworms' potential diet showed that a reduction in the N content of sheep dung at elevated CO2 was the most likely cause of the lower cast N concentrations. Earthworm casts made only a small contribution to mineral N cycling in our system; however, their quality may act as a sensitive indicator of reduced N availability under elevated CO2 which is consistent with the hypothesised process of progressive N limitation.  相似文献   

11.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

12.
Decomposition of Quercus myrtifolia leaf litter in a Florida scrub oak community was followed for 3 years in two separate experiments. In the first experiment, we examined the effects CO2 and herbivore damage on litter quality and subsequent decomposition. Undamaged, chewed and mined litter generated under ambient and elevated (ambient+350 ppm V) CO2 was allowed to decompose under ambient conditions for 3 years. Initial litter chemistry indicated that CO2 levels had minor effects on litter quality. Litter damaged by leaf miners had higher initial concentrations of condensed tannins and nitrogen (N) and lower concentrations of hemicellulose and C : N ratios compared with undamaged and chewed litter. Despite variation in litter quality associated with CO2, herbivory, and their interaction, there was no subsequent effect on rates of decomposition under ambient atmospheric conditions. In the second experiment, we examined the effects of source (ambient and elevated) of litter and decomposition site (ambient and elevated) on litter decomposition and N dynamics. Litter was not separated by damage type. The litter from both elevated and ambient CO2 was then decomposed in both elevated and ambient CO2 chambers. Initial litter chemistry indicated that concentrations of carbon (C), hemicellulose, and lignin were higher in litter from elevated than ambient CO2 chambers. Despite differences in C and fiber concentrations, litter from ambient and elevated CO2 decomposed at comparable rates. However, the atmosphere in which the decomposition took place resulted in significant differences in rates of decomposition. Litter decomposing under elevated CO2 decomposed more rapidly than litter under ambient CO2, and exhibited higher rates of mineral N accumulation. The results suggest that the atmospheric conditions during the decomposition process have a greater impact on rates of decomposition and N cycling than do the atmospheric conditions under which the foliage was produced.  相似文献   

13.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

14.
Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L. and Q. pubescens Willd.) exposed to long-term elevated CO2 around a natural CO2 spring in Tuscany (Italy) was used to study the impact of increasing concentration of atmospheric CO2 on litter quality and C and N turnover rates in a Mediterranean-type ecosystem. Litter samples were collected in an area with elevated CO2 (>500 ppm) and in an area with ambient CO2 concentration (360 ppm). Leaf samples were analysed for concentrations of total C, N, lignin, cellulose, acid detergent residue (ADR) and polyphenol. The decomposition rate of litter was studied using a litter bag experiment (12 months) and laboratory incubations (3 months). In the laboratory incubations, N mineralization in litter samples was measured as well (125 days). Litter quality was expressed in terms of chemical composition and element ratios. None of the litter quality parameters was affected by elevated CO2 for the two Quercus species. Remaining mass in Q. cerris and Q. pubescens litter from elevated CO2 was similar to that from ambient conditions. C mineralization in Q. pubescens litter from elevated CO2 was lower than that from ambient CO2, but the difference was insignificant. This effect was not observed for Q. cerris. N mineralization was higher from litter grown at elevated CO2, but this difference disappeared at the end of the incubation. Litter of Q. pubescens had a higher quality than Q. cerris, and indeed mineralized more rapidly in the laboratory, but not under field conditions.  相似文献   

15.
We compared the CO2- and light-dependence of photosynthesis of four tree species (Acer rubrum, Carya glabra, Cercis canadensis, Liquidambar styraciflua) growing in the understory of a loblolly pine plantation under ambient or ambient plus 200 μl l–1 CO2. Naturally-established saplings were fumigated with a free-air CO2 enrichment system. Light-saturated photosynthetic rates were 159–190% greater for Ce. canadensis saplings grown and measured under elevated CO2. This species had the greatest CO2 stimulation of photosynthesis. Photosynthetic rates were only 59% greater for A. rubrum saplings under CO2 enrichment and Ca. glabra and L. styraciflua had intermediate responses. Elevated CO2 stimulated light-saturated photosynthesis more than the apparent quantum yield. The maximum rate of carboxylation of ribulose-1,5-bisphosphate carboxylase, estimated from gas-exchange measurements, was not consistently affected by growth in elevated CO2. However, the maximum electron transport rate estimated from gas- exchange measurements and from chlorophyll fluorescence, when averaged across species and dates, was approximately 10% higher for saplings in elevated CO2. The proportionately greater stimulation of light-saturated photosynthesis than the apparent quantum yield and elevated rates of maximum electron transport suggests that saplings growing under elevated CO2 make more efficient use of sunflecks. The stimulation of light-saturated photosynthesis by CO2 did not appear to correlate with shade-tolerance ranking of the individual species. However, the species with the greatest enhancement of photosynthesis, Ce. canadensis and L. styraciflua, also invested the greatest proportion of soluble protein in Rubisco. Environmental and endogenous factors affecting N partitioning may partially explain interspecific variation in the photosynthetic response to elevated CO2. Received: 16 February 1999 / Accepted: 30 August 1999  相似文献   

16.
A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers and compared to unchambered ambient CO2 during the entire growing season from 1989 through 1991. Dominant species were Andropogon gerardii (C4), A. scoparius (C4), Sorghastrum nutans (C4) and Poa pratensis (C3). Nitrogen and phosphorus concentrations in A. gerardii, P. pratensis and dicotyledonous herbs above ground biomass were estimated by periodic sampling throughout the growing season in 1989 and 1990. In 1991, N and P concentrations in peak biomass were estimated by an early August harvest. N and P concentrations in root production as a function of treatment were estimated using root ingrowth bags that remained in place throughout the growing season. Total N and P in above- and belowground biomass were calculated as products of concentration and peak biomass by species groups. N concentration in A. gerardii and dicotyledonous herb aboveground biomass was lower and total N higher in elevated CO2 plots than in ambient CO2 plots. N concentration in P. pratensis aboveground biomass was lower in elevated CO2 plots than in ambient, but total N did not differ among treatments in 2 out of 3 years. In 1990, N concentration in root ingrowth bag biomass was lower and total N greater in elevated CO2 than in ambient CO2 plots. Root ingrowth bag biomass N concentration did not differ among treatments in 1991, but total N was greater in elevated CO2 plots than in ambient CO2 plots. P concentration was lower under elevated CO2 compared to ambient in 1989, but did not differ substantially among treatments in 1990 or 1991. In all years, total P in aboveground A. gerardii and root ingrowth bag biomass was greater under elevated CO2 than ambient. P concentration and total P in P. pratensis was similar among treatments.  相似文献   

17.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling.  相似文献   

18.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

19.
Leaf mineral concentrations of co‐occurring Erica arborea, Juniperus communis and Myrtus communis were measured at bimonthly intervals throughout a year in a natural CO2 spring and in a nearby control site with similar soil chemistry in a Mediterranean environment. There were different responses to the elevated [CO2] (c. 700 μL L?1) of the spring site plants depending on the element and the species. In the CO2 spring site K, Ca, Mg, Mn, Al, Fe, and Ti leaf concentrations and the ratio C/N showed significant greater values in at least one or two of the three species. Leaf S concentration were greater in all three species. Leaf concentrations of N, Sr, Co, and B were lower in at least one or two species, and those of C and Ba were lower in all the three studied species near the CO2 spring. P, Na, Zn, Si, Cu, Ni, Cr, Pb, Mo, V and Cd leaf concentrations and the specific leaf area (SLA, measured in Myrtus communis) did not show any consistent or significant pattern in response to the elevated [CO2] of the spring site. There was a slight trend towards maximum concentrations of most of these elements during autumn–winter and minimum values during the spring season, especially in Myrtus communis. Multivariate principal component analyses based on the leaf elemental concentrations clearly differentiated the two sites and the three species. Lower concentrations at the spring site were not the result of a dilution effect by increased structural or nonstructural carbon. In contrast to most experimental studies of CO2 enrichment, mainly conducted for short periods, several of these elements had greater concentrations in the CO2 spring site. Nutrient acclimation and possible causes including decreased nutrient export, increased nutrient uptake capacity, photosynthetic down‐regulation, Mediterranean water stress, and higher H2S concentration in the spring site are discussed.  相似文献   

20.
Nitrogen‐fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one‐year‐old‐seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 µ mol mol ? 1) and elevated [CO2] (700 µ mol mol ? 1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen‐fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N‐labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June–August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994–1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C‐biomass allocation away from the leaves towards the shoots (all above‐ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2‐fixing tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号