共查询到20条相似文献,搜索用时 15 毫秒
1.
The gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. During the last 15 years, genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for the construction of strains with the desired genotypes. In order to obtain a better understanding of the central metabolism and to quantify the in vivo fluxes in C. glutamicum, the [13C]-labelling technique was combined with metabolite balancing to achieve a unifying comprehensive pathway analysis. These methods can determine the flux distribution at the branch point between glycolysis and the pentose phosphate pathway. The in vivo fluxes in the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified glucose-6-phosphate and 6-phosphogluconate dehydrogenases determined in vitro were in full accordance with the fluxes measured by the [13C]-labelling technique. These data indicate that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH/NADP concentrations and the specific activity of glucose-6-phosphate dehydrogenase. The carbon flux via the oxidative pentose phosphate pathway correlated with the NADPH demand for L-lysine synthesis. Although it has generally been accepted that phosphoenolpyruvate carboxylase fulfills a main anaplerotic function in C. glutamicum, we recently detected that a biotin-dependent pyruvate carboxylase exists as a further anaplerotic enzyme in this bacterium. In addition to the activities of these two carboxylases three enzymes catalysing the decarboxylation of the C4 metabolites oxaloacetate or malate are also present in this bacterium. The individual flux rates at this complex anaplerotic node were investigated by using [13C]-labelled substrates. The results indicate that both carboxylation and decarboxylation occur simultaneously in C. glutamicum so that a high cyclic flux of oxaloacetate via phosphoenolpyruvate to pyruvate was found. Furthermore, we detected that in C. glutamicum two biosynthetic pathways exist for the synthesis of DL-diaminopimelate and L-lysine. As shown by NMR spectroscopy the relative use of both pathways in vivo is dependent on the ammonium concentration in the culture medium. Mutants defective in one pathway are still able to synthesise enough L-lysine for growth, but the L-lysine yields with overproducers were reduced. The luxury of having these two pathways gives C. glutamicum an increased flexibility in response to changing environmental conditions and is also related to the essential need for DL-diaminopimelate as a building block for the synthesis of the murein sacculus. 相似文献
2.
Acetate is effectively taken up by whole cells of Corynebacterium glutamicum via a specific carrier with a pH optimum of 8. The K
m of acetate uptake was 50 μM and the V
max 25–35 nmol/mg dw min. The activation energy was determined to be 70 kJ/mol. Acetate uptake was competitively inhibited by
propionate with a K
i of about 30 μM and blocked by addition of sulfhydryl reagents. The transport activity was clearly dependent on the membrane
potential, but independent of the presence of Na +-ions. It is concluded that uptake of acetate proceeds by a secondary, proton coupled mechanism. 相似文献
5.
The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E. coli gene xylB (strain CRX2). These genes were provided on a high-copy-number plasmid and were under the control of the constitutive promoter trc derived from plasmid pTrc99A. Both recombinant strains were able to grow in mineral medium containing xylose as the sole carbon source, but strain CRX2 grew faster on xylose than strain CRX1. We previously reported the use of oxygen deprivation conditions to arrest cell replication in C. glutamicum and divert carbon source utilization towards product production rather than towards vegetative functions (M. Inui, S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertès, and H. Yukawa, J. Mol. Microbiol. Biotechnol. 7:182-196, 2004). Under these conditions, strain CRX2 efficiently consumed xylose and produced predominantly lactic and succinic acids without growth. Moreover, in mineral medium containing a sugar mixture of 5% glucose and 2.5% xylose, oxygen-deprived strain CRX2 cells simultaneously consumed both sugars, demonstrating the absence of diauxic phenomena relative to the new xylA-xylB construct, albeit glucose-mediated regulation still exerted a measurable influence on xylose consumption kinetics. 相似文献
7.
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed. 相似文献
8.
In recent years, biotechnological conversion of the alternative carbon source acetate has attracted much attention. So far, acetate has been mainly used for microbial production of bioproducts with bulk applications. In this study, we aimed to investigate the potential of acetate as carbon source for heterologous protein production using the acetate-utilizing platform organism Corynebacterium glutamicum. For this purpose, expression of model protein eYFP with the promoter systems T7 lac and tac was characterized during growth of C. glutamicum on acetate as sole carbon source. The results indicated a 3.3-fold higher fluorescence level for acetate-based eYFP production with T7 expression strain MB001(DE3) pMKEx2- eyfp compared to MB001 pEKEx2- eyfp. Interestingly, comparative eyfp expression studies on acetate or glucose revealed an up to 83% higher biomass-specific production for T7 RNAP-dependent eYFP production using acetate as carbon source. Furthermore, high-level protein accumulation on acetate was demonstrated for the first time in a high cell density cultivation process with pH-coupled online feeding control, resulting in a final protein titer of 2.7 g/L and product yield of 4 g per 100 g cell dry weight. This study presents a first proof of concept for efficient microbial upgrading of potentially low-cost acetate into high-value bioproducts, such as recombinant proteins. 相似文献
10.
Analysis of the metabolic network of lysine-producing Corynebacterium glutamicum showed that lysine yields are limited by the excess energy production in lysine biosynthesis. The most probable maximum yield is 0.47 mol/mol on glucose, when phospho enolpyruvate carboxylase functions in an anaplerotic rection. When this function is fulfilled by the glyoxylate pathway, a maximum yield of 0.38 mol/mol is obtained. 相似文献
11.
Carbohydrates exclusively serve as feedstock for industrial amino acid production with Corynebacterium glutamicum. Due to the industrial interest, knowledge about the pathways for carbohydrate metabolization in C. glutamicum steadily increases, enabling the rational design of optimized strains and production processes. In this review, we provide
an overview of the metabolic pathways for utilization of hexoses (glucose, fructose), disaccharides (sucrose, maltose), pentoses
( d-ribose, l-arabinose, d-xylose), gluconate, and β-glucosides present in C. glutamicum. Recent approaches of metabolic engineering of l-lysine production strains based on the known pathways are described and evaluated with respect to l-lysine yields. 相似文献
13.
The 2-methylcitrate cycle as the primary way to metabolize propionate was investigated using metabolic profiling. For this purpose, a fast harvesting procedure was applied in which cells growing in liquid minimal medium were harvested by a short centrifugation and freeze-dried. Subsequently, gas chromatography–mass spectrometry of polar extracts derivatized by MSTFA was employed for metabolite characterization. Routinely more than 300 different peaks were obtained in the chromatograms, and 74 substances were identified unequivocally by using pure standards. The procedure provided reliable data which closely relate to prior knowledge on flux distributions during growth on glucose and acetate as carbon sources. Propionate degradation via the 2-methylcitrate cycle was demonstrated on the metabolite level by the detection of the intermediates 2-methylcitrate and 2-methylisocitrate. Further characterization of the 2-methylcitrate cycle was carried out by comparing different mutant strains of this pathway. The growth deficit of a prpD2-mutant strain observed when propionate is added to a culture growing on acetate indicates that the toxic effect of propionate is based on the accumulation of 2-methylcitrate. It could also be shown that the 2-methylcitrate cycle is active in the absence of propionate and might fulfill house-keeping functions in the degradation of fatty acids or branched-chain amino acids. 相似文献
14.
琥珀酸是一种具有重要应用价值的四碳平台化合物。微生物法发酵生产琥珀酸以其社会、环境和经济优势展现出良好的发展前景。谷氨酸棒杆菌被广泛应用于氨基酸、核苷酸等高附加值化学品的工业化生产,在厌氧条件下细胞处于生长停滞状态,但仍能高效利用碳源合成有机酸,通过代谢工程改造的谷氨酸棒杆菌有望成为理想的琥珀酸生产菌株。结合近年来谷氨酸棒杆菌生产琥珀酸取得的最新成果,本文综述了构建高产琥珀酸工程菌株的代谢工程策略、底物的扩展利用,并展望了将来的研究方向。 相似文献
15.
A comprehensive approach to (13)C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTS(Fructose)) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTS(Mannose) was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific. 相似文献
18.
MOTIVATION: Metabolic flux analysis via a (13)C tracer experiment has been achieved using a Monte Carlo method with the assumption of system noise as Gaussian noise. However, an unbiased flux analysis requires the estimation of fluxes and metabolites jointly without the restriction on the assumption of Gaussian noise. The flux distributions under such a framework can be freely obtained with various system noise and uncertainty models. RESULTS: In this paper, a stochastic generative model of the metabolic system is developed. Following this, the Markov Chain Monte Carlo (MCMC) approach is applied to flux distribution analysis. The disturbances and uncertainties in the system are simplified as truncated Gaussian multiplicative models. The performance in a real metabolic system is illustrated by the application to the central metabolism of Corynebacterium glutamicum. The flux distributions are illustrated and analyzed in order to understand the underlying flux activities in the system. AVAILABILITY: Algorithms are available upon request. 相似文献
19.
A 24-kb plasmid with 21 open reading frames (ORFs) was newly isolated from Corynebacterium glutamicum ATCC 14997 and named pCGR2. Three of its ORFs were indispensable for stable autonomous replication of pCGR2 in C. glutamicum: in the absence of selective pressure, deletion derivatives of pCGR2 containing the three ORFs showed stability in C. glutamicum for over 50 generations. The first of these ORFs encoded replicase repA whose gene product revealed high amino acid sequence similarity to corresponding gene products of C. glutamicum pCG1-family plasmids in general, and to that of pTET3 plasmid repA in particular. The other two ORFs were located upstream of repA and exhibited high sequence similarity to pTET3 parA and parB, respectively. Interestingly, plasmids based on the pCGR2 were compatible not only with those based on different family plasmids (pBL1, pCASE1) but also with those based on pCG1-family plasmid. Plasmids comprising pCGR2 repA showed a copy number of four in C. glutamicum. The number increased to 240 upon introduction of a mutation within the repA origin of the putative promoter for counter-transcribed RNA. This 60-fold increase in copy number should immensely contribute towards enhanced expression of desired genes in C. glutamicum. 相似文献
20.
Carbon flux analysis during a pseudo-stationary phase of metabolite accumulation in a genetically engineered strain of Corynebacterium glutamicum, containing plasmids leading to over-expression of the ilvBNCD and panBC operons, has identified the basic metabolic constraints governing the potential of this bacterium to produce pantothenate. Carbon flux converging on pyruvate (75% of glucose uptake) is controlled by anabolic precursor requirements and NADPH demand provoking high carbon loss as CO 2 via the pentose pathway. Virtually all the flux of pyruvate is directed into the branched pathway leading to both valine and pantothenate production, but flux towards valine is tenfold higher than that transformed to pantothenate, indicating that significant improvements will only be obtained if carbon flux at the ketoisovalerate branchpoint can be modulated. 相似文献
|