首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aim of this work was to investigate the occurrence of phosphoenolpyruvate carboxykinase (PEPCK) in different tissues of Arabidopsis thaliana throughout its vegetative and reproductive growth. The A. thaliana genome contains two PEPCK genes (PCK1 and PCK2), and these are predicted to generate 73,404 and 72,891 Da protein products, respectively. Both genes were transcribed in a range of tissues; however, PCK1 mRNA appeared to be more abundant and was present in a wider range of tissues. PEPCK protein was present in flowers, fruit, developing seed, germinating seed, leaves, stems and roots. Two PEPCK polypeptides, of approximately 74 and approximately 73 kDa were detected by immunoblotting, and these may arise from PCK1 and PCK2, respectively. PEPCK was abundant in cotyledons during post-germinative growth, and this is consistent with its well established role in gluconeogenesis. PEPCK was also abundant in sink tissues, such as young leaves, in developing flowers, fruit and seed. Immunohistochemistry and in situ hybridization showed that PEPCK was present in the nectaries, stigma, endocarp of the fruit wall and in tissues involved in the transfer of assimilates to the developing ovules and seeds, such as the vasculature and seed coat. The potential functions of PEPCK in A. thaliana are discussed.  相似文献   

5.
The human PCK1 gene encoding phosphoenolpyruvate carboxykinase (GTP) (PEPCK) was isolated and sequenced. There is 91% amino acid sequence identity (567/622 residues) between the human and the rat proteins, with conservation of intron/exon borders. A polymorphic dinucleotide microsatellite with the structure (CA)16(TA)5(CA) was identified in the 3′ untranslated region of the cloned human PCK1 gene. This highly informative genetic marker has an estimated PIC value of 0.79 and heterozygosity of 0.81. Analysis of the RW pedigree demonstrated recombination between PCK1 and the MODY gene on chromosome 20. Multipoint linkage analysis of the reference pedigrees of the Centre d'Etude du Polymorphisme Humain localized PCK1 on the genetic map of chromosome 20 at a position distal to markers that are closely linked to MODY. PCK1 is part of a conserved linkage group on mouse Chromosome 2 with identical gene order but expanded length in the human genome.  相似文献   

6.
7.
AimsPhosphoenolpyruvate carboxykinase (PEPCK) is the rate limiting enzyme for gluconeogenesis, and plays a key role in recycling lactate for glucose production. It is synthesized as two separate isoforms; cytosolic (PEPCK-C, gene code; PCK1) and mitochondrial (PEPCK-M, gene code; PCK2). Previous studies of gluconeogenesis in endotoxemia have focused solely on PCK1. We investigated the relative roles of the two isoforms in hepatic and renal gluconeogenesis in a rat model of endotoxic shock, and in cultured hepatocytes.Main methodsRats were administered lipopolysaccharide (6 mg/kg; LPS) for 6 h. Cultured cells were incubated with lactate (5 mM) with or without tumor necrosis factor alpha (1 – 10 ng/ml). Rat liver and kidney samples as well as cultured cells were subjected to subcellular fractionation to produce mitochondrial and cytosolic fractions for PEPCK activity assay. PCK1 and PCK2 mRNA levels were measured using quantitative RT-PCR.Key findingsIn rat endotoxemia, hepatic PCK2 mRNA and PEPCK-M enzyme activity decreased by 53% and 38%, compared to sham controls. Hepatic PCK1 mRNA levels increased by 44%, but PEPCK-C enzyme activity remained unchanged. The changes in hepatic PEPCK-M coincided with a marked hypoglycemia and hyperlactatemia as well as elevated plasma interleukin 1 beta (IL1beta). Incubation of cultured hepatocytes with TNF-alpha inhibited lactate-induced increases in glucose production, PCK2 mRNA levels and PEPCK-M enzyme activity but had no effect on PCK1 mRNA levels or PEPCK-C activity.SignificanceThese results indicate that decreases in hepatic PEPCK-M play a key role in the manifestation of hyperlactatemia and hypoglycemia in endotoxemia.  相似文献   

8.
Malate, along with potassium and chloride ions, is an important solute for maintaining turgor pressure during stomatal opening. Although malate is exported from guard cells during stomatal closure, there is controversy as to whether malate is also metabolised. We provide evidence that phosphoenolpyruvate carboxykinase (PEPCK), an enzyme involved in malate metabolism and gluconeogenesis, is necessary for full stomatal closure in the dark. Analysis of the Arabidopsis PCK1 gene promoter indicated that this PEPCK isoform is specifically expressed in guard cells and trichomes of the leaf. Spatially distinct promoter elements were found to be required for post-germinative, vascular expression and guard cell/trichome expression of PCK1. We show that pck1 mutant plants have reduced drought tolerance, and show increased stomatal conductance and wider stomatal apertures compared with the wild type. During light-dark transients the PEPCK mutant plants show both increased overall stomatal conductance and less responsiveness of the stomata to darkness than the wild type, indicating that stomata get 'jammed' in the open position. These results show that malate metabolism is important during dark-induced stomatal closure and that PEPCK is involved in this process.  相似文献   

9.
10.
11.
12.
13.
The selective expression of a unique copy gene in several mammalian tissues has been approached by studying the regulatory sequences needed to control expression of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene in transgenic mice. A transgene containing the entire PEPCK gene, including 2.2 kb of the 5'-flanking region and 0.5 kb of the 3'-flanking region, exhibits tissue-specific expression in the liver, kidney, and adipose tissue, as well as the hormonal and developmental regulation inherent to endogenous gene expression. Deletions of the 5'-flanking region of the gene have shown the need for sequences downstream of position -540 of the PEPCK gene for expression in the liver and sequences downstream of position -362 for expression in the kidney. Additional sequences upstream of position -540 (up to -2200) are required for expression in adipose tissue. In addition, the region containing the glucocorticoid-responsive elements of the gene used by the kidney was identified. This same sequence was found to be needed specifically for developmental regulation of gene expression in the kidney and, together with upstream sequences, in the intestine. The apparently distinct sequence requirements in the various tissues indicate that the tissues use different mechanisms for expression of the same gene.  相似文献   

14.
15.
We have isolated and sequenced a yeast gene encoding a protein (Mr 24,875) very rich in serine (SRP) and alanine residues that accounted for 25% and 20% of the total amino acids, respectively. The SRP1 gene is highly expressed in culture conditions leading to glucose repression (Marguet & Lauquin, 1986), the amount of SRP1 mRNA representing about 1 to 2% of total poly(A)+ RNA. A repetitive structure of eight direct tandem repeats 36-base long, also reflected in the amino acid sequence, was found in the second half of the open reading frame. The consensus amino acid sequence of the repeat was Ser-Ser-Ser-Ala-Ala-Pro-Ser-Ser-Ser-Glu-Ala-Lys. Replacing the genomic copy of the cloned gene with a disrupted SRP1 gene indicated that the SRP1 gene was not essential for viability in yeast, but several SRP1-homologous sequences were found within the yeast genome, raising the possibility that the disrupted SRP1 gene is rescued by one of the other SRP-homologous sequences. Complete separation of yeast chromosomes by contour-clamped homogeneous field electrophoresis indicated that, apart from chromosome V, which carries the SRP1 gene, 12 chromosomes have SRP-related sequences with various degrees of homology. These sequences were located on chromosomes XV, VII and XI under stringent conditions of hybridization (tm -20 degrees C), and observed on chromosomes I, II, III, IV, VI, VIII, X, XI and XII, only under low-stringency conditions (tm -40 degrees C). Northern blot analysis of both the wild type and SRP1-disrupted strains indicated that along with SRP1 at least one more member of the SRP family was transcribed to a 0.7 kb (1 kb = 10(3) bases) polyadenylated RNA species clearly distinct from the SRP1-specific mRNA (1 kb long). Analyses of the SRP1 repeat domain suggested a model for the divergent evolution of the repeats in the SRP1 sequence.  相似文献   

16.
17.
18.
C Goyon  G Faugeron  J L Rossignol 《Gene》1988,63(2):297-308
  相似文献   

19.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

20.
Inbred strains of mice were found to differ with regard to their endogenous activities of the liver enzymes serine dehydratase (SD) and phosphoenolpyruvate carboxykinase (PEPCK). The strain distribution patterns for the activity of each enzyme were identical. On feeding of high-protein diets or on fasting, the activities of both enzymes were induced in a concordant fashion which suggested the control of both enzymes by a single gene. Genetic analysis established that the induction of both enzymes on feeding of high-protein diets was controlled by a single gene (Sdr-1), whereas the induction of SD, but not of PEPCK, on fasting was controlled by different single gene (Sdr-2). The lack of segregation of the backcross generations with respect to PEPCK activities obtained on fasting precluded the establishment of any association of the response of PEPCK to fasting with either the Sdr-1 or Sdr-2 locus. The strain of mice (BALB/cJ) that had the ability to maximally induce both gluconeogenic enzymes under both dietary treatments failed to survive a fast as long as those strains with less ability to induce. This suggests that the ability to induce key enzymes in gluconeogenesis when food is unavailable is of little consequence with regard to their ability to produce essential nutrients necessary for survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号