首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Five economically important crop pests, Manduca sexta, Pieris brassicae, Mamestra brassicae, Spodoptera exigua, and Agrotis ipsilon, were tested at two stages of larval development for susceptibility to Bacillus thuringiensis toxins Cry1Ac, Cry1Ca, Cry1J, and Cry1Ba. Bioassay results for M. sexta showed that resistance to all four Cry toxins increased from the neonate stage to the third-instar stage; the increase in resistance was most dramatic for Cry1Ac, the potency of which decreased 37-fold. More subtle increases in resistance during larval development were seen in M. brassicae for Cry1Ca and in P. brassicae for Cry1Ac and Cry1J. By contrast, the sensitivity of S. exigua did not change during development. At both larval stages, A. ipsilon was resistant to all four toxins. Because aminopeptidase N (APN) is a putative Cry1 toxin binding protein, APN activity was measured in neonate and third-instar brush border membrane vesicles (BBMV). With the exception of S. exigua, APN activity was found to be significantly lower in neonates than in third-instar larvae and thus inversely correlated with increased resistance during larval development. The binding characteristics of iodinated Cry1 toxins were determined for neonate and third-instar BBMV. In M. sexta, the increased resistance to Cry1Ac and Cry1Ba during larval development was positively correlated with fewer binding sites in third-instar BBMV than in neonate BBMV. The other species-instar-toxin combinations did not reveal positive correlations between potency and binding characteristics. The correlation between binding and potency was inconsistent for the species-instar-toxin combinations used in this study, reaffirming the complex mode of action of Cry1 toxins.  相似文献   

2.
Abstract The binding and pore formation properties of toxins derived form Bacillus thuringiensis 9816C were analyzed by using brush border membrane vesicles (BBMV) of Spodoptera exigua and Helicoverpa armigera , and the results were compared to the results of toxicity bioassays. The strain 9816C is highly toxic to both S. exigua and H. armigera , whereas HΔ-73, which only produces Cry1Ac, is merely effective for H. armigera. Ligand blot experiment performed with peroxidase-labeled toxins revealed that the toxins of the two strains had the same binding sites as H. armigera BBMV and different binding sites from S. exigua BBMV. The toxins of Bt 9816C bind to a 210-kDa protein of S. exigua BBMV, while Cry1Ac cannot recognize this binding site. Both toxins were tested for the ability to alter the permeability of S. exigua BBMV, as measured by a light scattering assay. The toxins of Bt 9816C, which is toxic to S. exigua , permeabilized BBMV, whereas Cry1Ac did not. These results suggest that the specific binding site recognized by Bt 9816C toxins is responsible for its high toxicity against Spodoptera exigua.  相似文献   

3.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

4.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

5.
Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.  相似文献   

6.
Three types of binding assays were used to study the binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS-PAGE-separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N-acetylgalactosamine (GalNac) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta-endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.  相似文献   

7.
8.
Cry1Ac δ-endotoxin produced by Bacillus thuringiensis (Bt) is used as a bio-pesticide for the control of Helicoverpa armigera. Aminopeptidases N (APN) and alkaline phosphatase (ALP) play critical roles in its action against H. armigera larvae. The binding of Cry1Ac with brush border membrane vesicle (BBMV) proteins was increased with the larval development although the sensitivity of larvae to δ-endotoxins decreased. There was higher expression of ALP than APN in early instar larvae with a ~10-fold higher affinity of Cry1Ac towards ALP than to APN. Binding to a specific receptor is therefore more important for the insecticidal activity rather than overall binding to the BBMV proteins. ALP might play a major role in toxicity as compared to APN.  相似文献   

9.
The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule.  相似文献   

10.
The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.  相似文献   

11.
Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far.  相似文献   

12.
We determined that Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxins recognize the same 110, 120 and 170 kDa aminopeptidase N (APN) molecules in brush border membrane vesicles (BBMV) from Heliothis virescens. The 110 kDa protein, not previously identified as an APN, contained a variant APN consensus sequence identical to that found in Helicoverpa punctigera APN 2. PCR amplification of H. virescens cDNA based on this sequence and a conserved APN motif yielded a 0.9 kb product that has 89% sequence homology with H. punctigera APN 2. Western blots revealed that the 110 kDa molecule was not recognized by soybean agglutinin, indicating the absence of GalNAc. A 125I labeled-Cry1Ac domain III mutant (509QNR(511)-AAA) that has an altered GalNAc binding pocket (Lee et al., Appl. Environ. Microbiol. 65 (1999) 4513) showed abolished binding to the 120 APN, reduced binding to the 170 kDa APN, and enhanced binding to the 110 kDa APN. Periodate treated H. virescens BBMV blots were also probed with 125I labeled-Cry1Ac and 509QNR(511)-AAA toxins. Both toxins still recognized the 110 kDa APN and a >210 kDa molecule which may be a cadherin-like protein. Additionally, 125I-(509)QNR(511)-AAA recognized periodate treated 170 kDa APN. Results indicate that the 110 kDa APN is distinct from other Cry1 toxin binding APNs and may be the first described Cry1Ac-binding APN that does not contain GalNAc.  相似文献   

13.
Bacillus thuringiensis Cry1Ac delta-endotoxin specifically binds a 115-kDa aminopeptidase-N purified from Manduca sexta midgut. Cry1Ac domain III mutations were constructed around a putative sugar-binding pocket and binding to purified aminopeptidase-N and brush border membrane vesicles (BBMV) was compared to toxicity. Q509A, R511A, Y513A, and 509-511 (QNR-AAA) eliminated aminopeptidase-N binding and reduced binding to BBMV. However, toxicity decreased no more than two-fold, indicating activity is not directly correlated with aminopeptidase-N binding. Analysis of toxin binding to aminopeptidase-N in M. sexta is therefore insufficient for predicting toxicity. Mutants retained binding, however, to another BBMV site, suggesting alternative receptors may compensate in vivo.  相似文献   

14.
Bacillus thuringiensis protein delta-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac delta-endotoxin towards Pieris brassicae (family: Pieridae) and Mamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of approximately 56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of approximately 58, approximately 40, and approximately 20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, but M. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects.  相似文献   

15.
δ-Endotoxins produced by Bacillus thuringiensis (Bt) have been used as bio-pesticides for the control of lepidopteran insect pests. Garlic (Allium sativum L.) leaf agglutinin (ASAL), being toxic to several sap-sucking pests and some lepidopteran pests, may be a good candidate for pyramiding with δ-endotoxins in transgenic plants for enhancing the range of resistance to insect pests. Since ASAL shares the midgut receptors with Cry1Ac in Helicoverpa armigera, there is possibility of antagonism in their toxicity. Our study demonstrated that ASAL increased the toxicity of Cry1Ac against H. armigera while Cry1Ac did not alter the toxicity of ASAL against cotton aphids. The two toxins interacted and increased binding of each other to brush border membrane vesicle (BBMV) proteins and to the two important receptors, alkaline phosphatase (ALP) and aminopeptidase N (APN). The results indicated that the toxins had different binding sites on the ALP and APN but influenced mutual binding. We conclude that ASAL can be safely employed with Cry1Ac for developing transgenic crops for wider insect resistance.  相似文献   

16.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit (125)I-Cry1Ab binding to BBMV. Cry1F inhibited (125)I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

17.
Insecticidal activity and receptor binding properties of Bacillus thuringiensis toxins to yellow and striped rice stem borers (Sciropophaga incertulas and Chilo suppresalis, respectively) were investigated. Yellow stem borer (YSB) was susceptible to Cry1Aa, Cry1Ac, Cry2A, and Cry1C toxins with similar toxicities. To striped stem borer (SSB), Cry1Ac, Cry2A, and Cry1C were more toxic than Cry1Aa toxin. Binding assays were performed with (sup125)I-labeled toxins (Cry1Aa, Cry1Ac, Cry2A, and Cry1C) and brush border membrane vesicles (BBMV) prepared from YSB and SSB midguts. Both Cry1Aa and Cry1Ac toxins showed saturable, high-affinity binding to YSB BBMV. Cry2A and Cry1C toxins bound to YSB BBMV with relatively low binding affinity but with high binding site concentration. To SSB, both Cry1Aa and Cry1Ac exhibited high binding affinity, although these toxins are less toxic than Cry1C and Cry2A. Cry1C and Cry2A toxins bound to SSB BBMV with relatively low binding affinity but with high binding site concentration. Heterologous competition binding assays were performed to investigate the binding site cross-reactivity. The results showed that Cry1Aa and Cry1Ac recognize the same binding site, which is different from the Cry2A or Cry1C binding site in YSB and SSB. These data suggest that development of multitoxin systems in transgenic rice with toxin combinations which recognize different binding sites may be useful in implementing deployment strategies that decrease the rate of pest adaptation to B. thuringiensis toxin-expressing rice varieties.  相似文献   

18.
In order to test our hypothesis that Bacillus thuringiensis delta-endotoxin Cry1Ca domain III functions as a determinant of specificity for Spodoptera exigua, regardless of the origins of domains I and II, we have constructed by cloning and in vivo recombination a collection of hybrid proteins containing domains I and II of various Cry1 toxins combined with domain III of Cry1Ca. Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ea, and Cry1Fa all become more active against S. exigua when their domain III is replaced by (part of) that of Cry1Ca. This result shows that domain III of Cry1Ca is an important and versatile determinant of S. exigua specificity. The toxicity of the hybrids varied by a factor of 40, indicating that domain I and/or II modulate the activity as well. Cry1Da-Cry1Ca hybrids were an exception in that they were not significantly active against S. exigua or Manduca sexta, whereas both parental proteins were highly toxic. Incidentally, in a Cry1Ba-Cry1Ca hybrid, Cry1Ca domain III can also strongly increase toxicity for M. sexta.  相似文献   

19.
Bacillus thuringiensis Cry1Ac insecticidal toxin binds specifically to 120kDa aminopeptidase N (APN) (EC 3.4.11.2) in the epithelial brush border membrane of Manduca sexta midguts. The isolated 120-kDa APN is a member of a functional Cry1 toxin receptor complex (FEBS Lett. 412 (1997) 270). The 120-kDa form is glycosyl-phosphatidylinositol (GPI) anchored and converted to a 115-kDa form upon membrane solubilization. The 115-kDa APN also binds Cry1A toxins and Cry1Ac binding is inhibited by N-acetylgalactosamine (GalNAc). Here we determined the monosaccharide composition of APN. APN is 4.2mol% carbohydrate and contains GalNAc, a residue involved in Cry1Ac interaction. APN remained associated with non-covalently bound lipids through anion-exchange column purification. Most associated lipids were separated from APN by hydrophobic interaction chromatography yielding a lipid aggregate. Chemical analyses of the lipid aggregate separated from APN revealed neutral lipids consisting mostly of diacylglycerol and free fatty acids. The fatty acids were long, unsaturated chains ranging from C:14 to C:22. To test the effect of APN-associated lipids on Cry1Ac function, the lipid aggregate and 115-kDa APN were reconstituted into phosphatidylcholine (PC) vesicles. The lipid aggregate increased the amount of Cry1Ac binding, but binding due to the lipid aggregate was not saturable. In contrast the lipid aggregate promoted Cry1Ac-induced release of 86Rb(+) at the lowest Cry1Ac concentration (50nM) tested. The predominant neutral lipid component extracted from the lipid aggregate promoted Cry1Ac-induced 86Rb(+) release from membrane vesicles in the presence of APN.  相似文献   

20.
We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that the binding of CryIAc to L. dispar BBMV was inhibited by APN. Inhibition of short circuit current for CryIAc, measured by voltage clamping of whole L. dispar midgut, was substantially reduced by addition of phosphatidylinositol-specific phospholipase C, which is known to release APN from the midgut membrane. In contrast, addition of phosphatidylinositol-specific phospholipase C had only a marginal effect on the inhibition of short circuit current for CryIAa. These data suggest that APN is the major functional receptor for CryIAc in L. dispar BBMV. A ligand blotting experiment demonstrated that CryIAc recognized a 120-kDa peptide (APN), while CryIAa and CryIAb recognized a 210-kDa molecule in L. dispar BBMV. In contrast, CryIAa and CryIAb bound to both the 120- and 210-kDa molecules in Manduca sexta BBMV, while CryIAc recognized only the 120-kDa peptide. The 120-kDa peptide (APN) in L. dispar BBMV reacted with soybean agglutinin, indicating that N-acetylgalactosamine is a component of this glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号