首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During C. elegans development, LIN-12 (Notch) signaling specifies the anchor cell (AC) and ventral uterine precursor cell (VU) fates from two equivalent pre-AC/pre-VU cells in the hermaphrodite gonad. Once specified, the AC induces patterned proliferation of vulva via expression of LIN-3 (EGF) and then invades into the vulval epithelium. Although these cellular processes are essential for the proper organogenesis of vulva and appear to be temporally regulated, the mechanisms that coordinate the processes are not well understood. We computationally identified egl-43 as a gene likely to be expressed in the pre-AC/pre-VU cells and the AC, based on the presence of an enhancer element similar to the one that transcribes lin-3 in the same cells. Genetic epistasis analyses reveal that egl-43 acts downstream of or parallel to lin-12 in AC/VU cell fate specification at an early developmental stage, and functions downstream of fos-1 as well as upstream of zmp-1 and him-4 to regulate AC invasion at a later developmental stage. Characterization of the egl-43 regulatory region suggests that EGL-43 is a direct target of LIN-12 and HLH-2 (E12/47), which is required for the specification of the VU fate during AC/VU specification. EGL-43 also regulates basement membrane breakdown during AC invasion through a FOS-1-responsive regulatory element that drives EGL-43 expression in the AC and VU cells at the later stage. Thus, egl-43 integrates temporally distinct upstream regulatory events and helps program cell fate specification and cell invasion.  相似文献   

2.
During Caenorhabditis elegans hermaphrodite development, the anchor cell induces the vulva and the uterine pi cells whose daughters connect to the vulva, thereby organizing the uterine-vulval connection. Both the initial selection of a single anchor cell during the anchor cell vs. ventral uterine precursor cell decision and the subsequent induction of the pi cell fate by the anchor cell are mediated by the lin-12 gene. Members of the presenilin gene family can cause early onset Alzheimer's disease when mutated and are also required for LIN-12/Notch signaling during development. We have shown that, in C. elegans, mutation of the sel-12-encoded presenilin results in pi cell induction defects. By contrast, other lin-12-mediated cell fate decisions occur normally in sel-12 mutants due to the redundant function of a second C. elegans presenilin called HOP-1. We found that the sel-12 egg-laying defect was partially rescued by expression of the sel-12 gene in the pi cells. sel-12-mediated pi cell fate specification provides a useful system for the analysis of presenilin function at single cell resolution.  相似文献   

3.
4.
Cinar HN  Richards KL  Oommen KS  Newman AP 《Genetics》2003,165(3):1623-1628
We isolated egl-13 mutants in which the pi cells of the Caenorhabditis elegans uterus initially appeared to develop normally but then underwent an extra round of cell division. The data suggest that egl-13 is required for maintenance of the pi cell fate.  相似文献   

5.
We isolated cog-3(ku212) as a C. elegans egg-laying defective mutant that is associated with a connection-of-gonad defective phenotype. cog-3(ku212) mutants appear to have no connection between the vulval and the uterine lumens at the appropriate stage because the uterine lumen develops with a temporal delay relative to the vulva and, thus, is not present when the connection normally forms. The lack of temporal synchronization between the vulva and the uterus is not due to precocious or accelerated vulval development. Instead, global gonadogenesis is mildly delayed relative to development of extra-gonadal tissue. cog-3(ku212) mutants also have a specific uterine fate defect. Normally, four cells of the uterine pi lineage respond via their LET-23 epidermal growth factor-like receptors to a vulval-derived LIN-3 EGF signal and adopt the uterine vulval 1 (uv1) fate. In cog-3(ku212) mutants, these four pi progeny cells are set aside as a pre-uv1 population but undergo necrosis prior to full differentiation. A gain-of-function mutation in LET-23 EGF receptor and ectopic expression of LIN-3 EGF within the proper temporal constraints can rescue the uv1 defect, suggesting that a signaling defect, perhaps due to the temporal delay, is at fault. In support of this model, we demonstrate that lack of vulval-uterine coordination due to precocious vulval development also leads to uv1 cell differentiation defects.  相似文献   

6.
Cell invasion is a tightly controlled process occurring during development and tumor progression. The nematode Caenorhabditis elegans serves as a genetic model to study cell invasion during normal development. In the third larval stage, the anchor cell in the somatic gonad first induces and then invades the adjacent epidermal vulval precursor cells. The homolog of the Evi-1 oncogene, egl-43, is necessary for basement membrane destruction and anchor cell invasion. egl-43 is part of a regulatory network mediating cell invasion downstream of the fos-1 proto-oncogene. In addition, EGL-43 is required to specify the cell fates of ventral uterus cells downstream of or in parallel with LIN-12 NOTCH. Comparison with mammalian Evi-1 suggests a conserved pathway controlling cell invasion and cell fate specification.  相似文献   

7.
8.
Secreted proteins of the Wnt family affect axon guidance, asymmetric cell division, and cell fate. We show here that C. elegans Wnts acting through Frizzled receptors can shape axon and dendrite trajectories by reversing the anterior-posterior polarity of neurons. In lin-44/Wnt and lin-17/Frizzled mutants, the polarity of the PLM mechanosensory neuron is reversed along the body axis: the long PLM process, PLM growth cone, and synapses are posterior to its cell body instead of anterior. Similarly, the polarity of the ALM mechanosensory neuron is reversed in cwn-1 egl-20 Wnt double mutants, suggesting that different Wnt signals regulate neuronal polarity at different anterior-posterior positions. LIN-17 protein is asymmetrically localized to the posterior process of PLM in a lin-44-dependent manner, indicating that Wnt signaling redistributes LIN-17 in PLM. In this context, Wnts appear to function not as instructive growth cone attractants or repellents, but as organizers of neuronal polarity.  相似文献   

9.
10.
11.
Li J  Greenwald I 《Current biology : CB》2010,20(20):1875-1879
Studies of C. elegans vulval development have illuminated mechanisms underlying cell fate specification and elucidated intercellular signaling pathways [1]. The vulval precursor cells (VPCs) are spatially patterned during the L3 stage by the EGFR-Ras-MAPK-mediated inductive signal and the LIN-12/Notch-mediated lateral signal. The pattern is both precise and robust [2] because of crosstalk between these pathways [3]. Signaling is also regulated temporally, because constitutive activation of the spatial patterning pathways does not alter the timing of VPC fate specification [4, 5]. The heterochronic genes, including the microRNA lin-4 and its target lin-14, constitute a temporal control mechanism used in different contexts [6-8]. We find that lin-4 specifically controls the activity of LIN-12/Notch through lin-14, but not other known targets, and that persistent lin-14 blocks LIN-12 activity without interfering with the key events of LIN-12/Notch signal transduction. In the L2 stage, there is sufficient lin-14 activity to inhibit constitutive lin-12. Our results suggest that lin-4 and lin-14 contribute to spatial patterning through temporal gating of LIN-12. We propose that in the L2 stage, lin-14 sets a high threshold for LIN-12 activation to help prevent premature activation of LIN-12 by ligands expressed in other cells in the vicinity, thereby contributing to the precision and robustness of VPC fate patterning.  相似文献   

12.
13.
In Caenorhabditis elegans, two lateral blast cells called P11/12L and P11/12R are symmetric left-right homologs at hatching, migrate subsequently in opposite anteroposterior directions during the first larval stage, and adopt two different fates, thus breaking the symmetry between them. Our results show that, unlike most other cell fate decisions in C. elegans, the orientation of P11/12L/R migration is highly biased, but not fixed. The handedness of their migration is linked to whole body handedness and is randomized in lin-12/Notch mutants and by ablation of the Y cell. Migration handedness is independent of P11 and P12 fate determination, previously shown to require the LIN-44/Wnt and the LIN-3/EGF pathways (L. I. Jiang and P. W. Sternberg, 1998, Development 125, 2337-2347). We further show that several changes in P11/12L/R asymmetry have occurred during nematode evolution: loss of asymmetry or reversals in orientation of migration. Strikingly, for most species studied, handedness of migration is highly biased but not fixed. Thus, whereas the final cell fate pattern of P11/12 is invariant, the developmental route leading to it is subject both to developmental indeterminacy and to evolutionary variations.  相似文献   

14.
15.
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.  相似文献   

16.
17.
Vulval development in the Caenorhabditis elegans hermaphrodite represents a simple, genetically tractable system for studying how cell signaling events control cell fata decisions. Current models suggest that proper specification of vulval cell fates relies on the integration of multiple signaling systems, including one that involves a receptor tyrosine kinase (RTK)→Ras→mitogen activated protein kinase (MAPK) cascade and one that involves a LIN-12/Notch family receptor. In this review, we first discuss how genetic strategies are being used to identify and analyze components that control vulval cell fate decisions. We then describe the different signaling systems that have been elucidated and how they relate to one another. Finally, we highlight several recently characterized genes that encode positive regulators, negative regulators or potential targets of the RTK→Ras→MAPK cascade involved in vulval induction.  相似文献   

18.
19.
Singhvi A  Frank CA  Garriga G 《Genetics》2008,179(2):887-898
Understanding how neurons adopt particular fates is a fundamental challenge in developmental neurobiology. To address this issue, we have been studying a Caenorhabditis elegans lineage that produces the HSN motor neuron and the PHB sensory neuron, sister cells produced by the HSN/PHB precursor. We have previously shown that the novel protein HAM-1 controls the asymmetric neuroblast division in this lineage. In this study we examine tbx-2 and egl-5, genes that act in concert with ham-1 to regulate HSN and PHB fate. In screens for mutants with abnormal HSN development, we identified the T-box protein TBX-2 as being important for both HSN and PHB differentiation. TBX-2, along with HAM-1, regulates the migrations of the HSNs and prevents the PHB neurons from adopting an apoptotic fate. The homeobox gene egl-5 has been shown to regulate the migration and later differentiation of the HSN. While mutations that disrupt its function show no obvious role for EGL-5 in PHB development, loss of egl-5 in a ham-1 mutant background leads to PHB differentiation defects. Expression of EGL-5 in the HSN/PHB precursor but not in the PHB neuron suggests that EGL-5 specifies precursor fate. These observations reveal a role for both EGL-5 and TBX-2 in neural fate specification in the HSN/PHB lineage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号