首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Matrix metalloproteinases (MMPs) are metal-dependent endopeptidases that play pivotal roles in tumor disease progression. In many solid tumors, MMPs are indeed produced by tumor stromal cells, rather than by tumor cells. This expression pattern is, at least in part, regulated by tumor-stroma interaction via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). In vitro, recombinant EMMPRIN dose-dependently stimulated MMP-1 production by primary human fibroblast cells. Interestingly, in addition to stimulating MMP expression, EMMPRIN also induced its own gene expression. To further explore this potential positive feedback regulatory mechanism, we generated human breast cancer cells expressing different levels of EMMPRIN. Coculture of EMMPRIN-positive tumor cells with fibroblast cells resulted in a concomitant stimulation of MMP-2, MMP-9, and EMMPRIN production. This induction was EMMPRIN dependent, was further enhanced by overexpression, and was reduced by antisense suppression of EMMPRIN expression in tumor cells. Increased expression of membrane-associated EMMPRIN was accompanied by an MMP-dependent generation of a soluble form of EMMPRIN representing a proteolytic cleavage product lacking the carboxyl terminus. On the basis of these findings, we propose a model in which tumor cell-associated EMMPRIN stimulates MMPs, as well as EMMPRIN expression in tumor stroma. Increased MMP activity in tumor local environment results in proteolytic cleavage of membrane-associated EMMPRIN, releasing soluble EMMPRIN. Soluble EMMPRIN in turn acts in a paracrine fashion on stroma cells that are both adjacent and distant to tumor sites to further stimulate the production of MMPs and additional EMMPRIN, which consequently contributes to tumor angiogenesis, tumor growth, and metastasis.  相似文献   

2.
Purpose: Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of ovarian epithelial carcinomas.

Methods: EMMPRIN siRNA were transfected into ovarian carcinoma cells with the phenotypes and their related molecules examined. EMMPRIN expression was determined in ovarian normal tissue, benign and borderline tumors, and epithelial carcinomas by real-time PCR, western blot, and immunohistochemisty.

Results: EMMPRIN siRNA treatment resulted in a lower growth, G1 arrest, apoptotic induction, decreased migration, and invasion. The transfectants showed reduced expression of Wnt5a, Akt, p70s6k, Bcl-xL, survivin, VEGF, and MMP-9 than mock and control cells at both mRNA and protein levels. According to real-time PCR and western blot, EMMPRIN mRNA or protein level was higher in ovarian borderline tumor and carcinoma than normal ovary and benign tumors (P < 0.05), and positively correlated with dedifferentiation and FIGO staging (P < 0.05). Immuhistochemically, EMMPRIN expression was positively correlated with FIGO staging, dedifferentiation, Ki-67 expression, the lower cumulative and relapse-free survival rate (P < 0.05).

Conclusions: Upregulated expression of EMMPRIN protein and mRNA might be involved in the pathogenesis, differentiation, and progression of ovarian carcinomas, possibly by modulating cellular events, such as proliferation, cell cycle, apoptosis, migration, and invasion.  相似文献   

3.
Matrix metalloproteinase expression was examined in a series of mammalian cell lines of varying degrees of malignant progression. The expression of MMP-2 and MMP-9 was found to correlate with ras-mediated cellular transformation and as a function of malignant potential. Altered MMP-2 and MMP-9 expression was found to correlate also in other oncogene transformed cell lines and the level of expression of both MMP-2 and MMP-9 correlated with metastatic potential. Increased expression of both MMP-2 and MMP-9 was also found in cells which constitutively over-express MAP kinase kinase suggesting that one of the consequences of the persistent activation of the MAP kinase pathway is elevated expression of MMP-2 and MMP-9. Additionally, this study demonstrated a correlation between the expression of MMP-3 (stromelysin-1) and the level of ras expressed in cells and with the cells' ability to form tumors and with malignant potential. The existence of a novel 80 kDa caseinase activity which correlates with ras expression and the ability of the cell to form tumors was also demonstrated. The growth status of transformed cells was also found to be important in determining the expression of MMP-2 mRNA but not MMP-9 mRNA expression, and this expression was cell-type specific. This study also demonstrates that oncogenes can interact to influence and to determine the nature of the matrix metalloproteinases expressed and that this interaction results in a tumorigenic phenotype and, most importantly, contributes to the metastatic phenotype. Alterations in the expression and the regulation of MMPs, particularly MMP-2 and MMP-9, constitute an integral part of the altered growth regulatory program found within transformed cells and in particular, in transformed cells capable of malignant progression.  相似文献   

4.
Matrix metalloproteinases (MMPs) are regarded as a significant regulator in tumor invasion and metastasis. Previous studies have shown that extracellular matrix metalloproteinase inducer (EMMPRIN) in tumor cells induces the synthesis of MMPs. EMMPRIN is abundantly present on the surface of tumor cells and stimulate adjacent stromal cells to synthesize MMPs to induce tumor progression. Giant cell tumor (GCT) of bone is a benign but locally aggressive primary neoplasm of bone. The spindle-shaped mononuclear stromal cells are considered to be the tumor components of GCT, which are capable of inducing osteoclast formation by recruiting the circulating monocyte and macrophage. In this study, we proposed that EMMPRIN is associated with the biological progression and aggressiveness of GCT. We have conducted semi-quantitative RT-PCR to determine the correlation of EMMPRIN expression with the clinical stage of GCT. We have also examined the cellular localization of EMMPRIN in GCT using in-situ hybridization (ISH) and Immunohistochemistry (IH). The results showed that EMMPRIN was present in GCT and its mRNA levels were associated with the clinical stage of GCT. Higher expression level of EMMPRIN was observed in GCT with advanced stage (stage III). There was a great significance (P < 0.05) of EMMPRIN expression between stage I & II and stage III GCTs. Both ISH and IH demonstrated that EMMPRIN is present at the multinuclear osteoclast-like giant cells of GCT, with strong immunostaining on the cell membrane. The stromal-like tumor cells were also positively stained but the intensity was weaker. Interestingly, the production of EMMPRIN in osteoclast-like cells of GCT seems to be regulated by stromal-like tumor cells. Receptor activator of NF-kappaB ligand (RANKL), which has been previously shown to be produced by the stromal-like tumor cells for the recruitment of osteoclast-like giant cells in GCT, enhanced the expression of EMMPRIN mRNA during the differentiation of macrophage-like RAW(264.7) cells into osteoclasts. In short, our studies suggest that EMMPRIN may be an important regulatory factor involved in the biological behaviors of GCT.  相似文献   

5.
Tumor cells interact with stromal cells via soluble or cell-bound factors stimulating the production of matrix metalloproteinases (MMPs), a group of enzymes largely involved in the extracellular matrix (ECM) remodeling in tumor invasion. Among these factors, extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to stimulate in vitro the fibroblast production of various MMPs such as interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), and gelatinase A (MMP-2). In this study, the EMMPRIN protein was detected by immunohistochemistry prominently in malignant proliferations of the breast and the lung. It was present at the surface of both tumor epithelial and peritumor stromal cells. Because previous studies have reported that stromal cells do not express EMMPRIN mRNAs, it is very likely that EMMPRIN is bound to stromal cells via a specific receptor. Moreover, our observations also demonstrated that the same peritumor stromal cells strongly express MMP-2. Our results show that EMMPRIN is an important factor in tumor progression by causing tumor-associated stromal cells to increase their MMP-2 production, thus facilitating tumor invasion and neoangiogenesis. (J Histochem Cytochem 47: 1575-1580, 1999)  相似文献   

6.
7.
8.
9.
OBJECTIVE: Extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP)-9 were reported to be expressed at the macrophage-rich area in human coronary atherosclerotic plaque. We examined whether C-reactive protein (CRP) activates macrophages to express EMMPRIN and MMP-9 in vitro and whether statins inhibit it. METHODS AND RESULTS: Rat peritoneal macrophages were collected by peritoneal lavage, and were incubated in the presence or absence of CRP. CRP at 5 microg/ml increased the gene expression of EMMPRIN relative to GAPDH, measured by RT-PCR, by 1.67+/-0.07 fold at 24 h and by 1.85+/-0.49 fold at 48 h (both p<0.05). The gene expression of MMP-9 in the presence of CRP at 5 microg/ml was followed by 1.36+/-0.11 fold increase at 24 h and by 3.95+/-0.81 fold at 48 h (both p<0.05). CRP at 5 microg/ml for 48 h increased by 6 fold MMP-9 activity, measured by zymography, without affecting tissue inhibitor of metalloproteinases-1. Boiled CRP at 5 mug/ml for 48 h unaffected MMP-9 activity. Fluvastatin blocked the CRP-induced increases in EMMPRIN and MMP-9 expression and activity. Diphenylene iodonium, an inhibitor of NADPH oxidase, had a similar effect on MMP-9 activity. Fluvastatin suppressed the CRP-induced increases in 8-epi-prostaglandin F(2alpha) levels in the condition media. CONCLUSIONS: CRP is an activator for macrophages to enhance EMMPRIN and MMP-9 expression. Fluvastatin inhibits them presumably through its antioxidant effect.  相似文献   

10.
Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147), which is a plasma membrane glycoprotein enriched on the surface of many malignant tumors promotes adhesion, invasion and metastasis of tumor cells. In addition, tumor-associated CD147 also induces vascular endothelial growth factors (VEGFs) expression. To investigate the possible role of CD147 in the mouse hepatocarcinoma cell line Hca-F with highly metastatic potential in the lymph nodes, we used an RNA interference (RNAi) approach to silence CD147 expression. The results showed that CD147 depletion in Hca-F cells resulted in the significantly decreased expression of matrix metalloproteinase-11 (MMP-11), VEGF-A at both mRNA and protein levels. The reduced CD147 expression also attenuated the invasive, adhesive, metastatic ability of Hca-F cells to lymph nodes both in vitro and in vivo. Our current findings reveal that the tumor biological marker CD147 functionally mediates MMP-11, VEGF-A expression and tumor lymphatic metastasis.  相似文献   

11.
The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.  相似文献   

12.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

13.
14.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

15.
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis.  相似文献   

16.

Background

Matrix metalloproteinases (MMPs) play an important role in the modeling and remodeling of the extracellular matrix in both physiologic and pathologic states and thus plays an important role in tumor progression. Human collagenase-3 (MMP-13) is a member of matrix metalloproteinase family of enzymes that was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes.

Aim

The present study was designed to investigate the expression MMP-13 and to correlate its expression with clinicopathological parameters in chondrosarcoma of the jaws.

Methods

Archival tumor tissues from 11 patients with chondrosarcoma of the jaws were analyzed by immunohistochemistry for the expression of MMP-13. Clinical information was obtained through the computerized retrospective database from the tumor registry between 1998 to 2006.

Results

Eight of 11 cases (72.8 %) of chondrosarcomas showed a positive reaction for MMP-13, whereas two cases of normal cartilage were negative for this collagenase. As regard the clinicopathological parameters, there was no correlation between MMP-13 expression and sex, age and tumor site. While, there were significant associations between MMP-13 expression and both of mitotic counts and necrosis. On the other hand, there was a significant difference between low and high grade tumors (P < 0.05) regarding MMP-13 expression. Also, there was no significant correlation between MMP-13 expression in primary lesions and their local recurrence.

Conclusion

MMP-13 is expressed in the majority of chondrosarcoma of the jaws. It is also noteworthy that the expression of MMP-13 may be related to tumor biological aggressiveness and used to aid in predicting patient's poor prognosis.  相似文献   

17.
The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.  相似文献   

18.
Elevated activities of matrix metalloproteinases (MMPs) following ischemic stroke have been shown to mediate ischemic injury as well as neurovascular remodeling. The extracellular MMP inducer (EMMPRIN) is a 58-kDa cell surface glycoprotein, which has been known to play a key regulatory role for MMP activities. The roles of EMMPRIN in stroke injury are not clearly understood. In this study, we investigated changes of EMMPRIN in a mouse model of permanent focal cerebral ischemia, and examined potential association between EMMPRIN and MMP-9 expression. Adult male CD-1 mice were subjected to permanent focal ischemia by intraluminal occlusion of the left middle cerebral artery (MCAO) under anesthesia. EMMPRIN expression was markedly upregulated in the peri-infarct area at 2-7 days after ischemia compared to the contralateral non-ischemic hemisphere by Western blot analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals co-localized with vwF-positive endothelial cells and GFAP-positive peri-vascular astrocytes. In contrast, EMMPRIN signal did not co-localize with NeuN-positive neurons, or MPO-positive neutrophils. Dual fluorescent staining revealed that EMMPRIN co-localized with MMP-9. Our data also demonstrated that increased EMMPRIN expression correlated with increased MMP-9 levels in a temporal manner. In summary, we report for the first time that EMMPRIN expression was significantly increased in a mouse model of permanent focal cerebral ischemia. The spatial and temporal association between increased EMMPRIN expression and elevated MMP-9 levels suggest that EMMPRIN may modulate MMP-9 activity, and participate in neurovascular remodeling after ischemic stroke.  相似文献   

19.
Tumor cell derived matrix metalloproteinases are a family of enzymes associated with the tumor invasion and metastasis. Extracellular matrix metalloproteinases inducer (EMMPRIN) stimulates synthesis of gelatinase A (MMP-2) in peritoneal fibroblasts. In the present study the role of MMP-2 and EMMPRIN in the progression of breast cancer has been investigated. Gelatinase-A and EMMPRIN were analyzed in benign as well as in stage II and stage III breast cancer tissue samples by gelatin zymography assay, immunoprecipation analysis and Western blot analysis with a monoclonal primary antibody specific for EMMPRIN. Our results showed over expression of EMMPRIN in advanced stages of breast cancer tissues compared with benign tumor tissue samples. The expression of MMP-2, the active and latent forms of the enzyme increased with tumor progression from Stage II to Stage III of breast cancer and it was not expressed in benign tissues. The expression MMP-2 correlates with tumor progression. This observation obviously indicates that EMMPRIN and MMP-2 are the major determinants of malignancy in cancers.  相似文献   

20.
We hypothesize that spontaneous regression of corpora lutea (CL) involves short-lasting restructure of luteal tissue with an activation of matrix metalloproteinases (MMPs) and their respective inhibitors (tissue inhibitors of metalloproteinase, TIMPs). This was tested by determining the gene expression of MMP-1, MMP-2, and MMP-9 and respective TIMP-1 and TIMP-2 in luteal tissue from sows at the early, midluteal, and late luteal phase (Days 6-8, Days 9-11, and Days 13-15 of estrous cycle). Gene expression of the three MMPs was low in early, slightly higher in midluteal, and significantly elevated (P < 0.05) in regressing CL. An inverse pattern was found for gene expression of TIMP-1 and TIMP-2. Under culture conditions, the release of MMPs was determined from steroidogenic large luteal cells (LLC). LLC harvested from regressing CL released significantly (P < 0.05) more active MMPs than cells obtained from CL at the early luteal phase. As luteolysis can be induced by prostaglandin F(2alpha) (PGF(2alpha)) and tumor necrosis factor alpha (TNF), we studied their effects on LLC under culture conditions. Treatment of cells with PGF(2alpha) or TNF (10(-7) M or 3 x 10(-9) M, respectively) induced a significantly higher release of MMPs, and gene expression was also significantly stimulated in comparison to that in untreated LLC. The gene expression of TIMPs remained unaffected by either treatment. It is concluded that at the beginning of luteolysis, MMPs are expressed and released in high amounts and that this is essential for the structural regression of the CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号