首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
In the previous paper (Quaroni, A., Calnek, D., Quaroni, E., and Chandler, J.S. (1991) J. Biol. Chem. 266, 11923-11931) we describe the use of a panel of "antikeratin" monoclonal antibodies to study cytokeratin distribution in rat intestinal epithelium. In the present paper we describe the use of three antikeratin monoclonal antibodies to identify and recovery cDNA clones expressing immunologically specific fusion proteins from a rat intestinal cDNA library. DNA sequence analysis identified each cDNA encoded epitope including the carboxyl-terminal portions of cytokeratins 8 and 19 (as cataloged by Moll, R., Franke, W.W., and Schiller, D.L. (1982) Cell 31, 11-24) recognized by antibodies RK4 and RK7, respectively. In addition, antibody RK5 was used to recover a cDNA clone (pRK5) encoding a portion of a 48-kDa keratin-related protein with unique tissue and cellular distribution, designated cytokeratin 21. Translation of cDNA-selected mRNAs yielded individual proteins which could be resolved and identified by their specific immunoreactivities. The pRK5 cDNA was used to recover a larger (approximately 1.3 kilobase pairs) cDNA clone (KB2) from an independent cDNA library for DNA sequence analysis and for the recovery of additional overlapping cDNA clones. The resulting cDNA sequence (1519 base pairs) contains the complete coding region of cytokeratin 21 (49,387 daltons). The predicted amino acid sequence of cytokeratin 21 confirms its identity as a novel type I cytokeratin expressed predominantly in the intestinal epithelium.  相似文献   

3.
The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells (Quaroni, A., and K. J. Isselbacher. 1981. J. Natl. Cancer Inst. 67:1353-1362) was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit (Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. 1985. Kidney Int. 28:899-913), was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.  相似文献   

4.
5.
An experimental model was designed to analyze the effect of fetal gut mesenchyme on the cytodifferentiation of crypt cells and of embryonic progenitor cells. The cells used were the rat intestinal crypt cell line, IEC-17, and primary cell cultures prepared form isolated 14-day-old fetal intestinal endoderm (EC). Both cultures prepared from isolated 14-day-old fetal rat intestinal endoderm (EC). Both types of cells were associated with 14-day-old fetal rat gut mesenchyme (Rm) and grafted under the kidney capsule of adult rats. Seventy percent of the Rm/EC and ten percent of the Rm/IEC recombinants, recovered after 9 days, exhibited well-vascularized structures in which the mesenchyme had induced morphogenesis of the cells into a villus epithelium. The four main intestinal epithelial cell types, absorptive, goblet, endocrine, and Paneth cells, were identified using electron microscopy. Biochemical determinations of enzyme activities associated with brush border membranes revealed that alkaline phosphatase, lactase, sucrase, and maltase were expressed in both types of associations. These results were confirmed by immunofluorescence staining using monoclonal antibodies to brush border enzymes. Both enzyme assays and immunocytochemistry showed that the amount of enzymes present in the brush border membrane of Rm/IEC grafts was in general lower than that of the Rm/EC recombinants. The results indicate that fetal rat gut mesenchyme enables morphogenesis and cytodifferentiation of both crypt and embryonic progenitor cells.  相似文献   

6.
The biosynthesis of membrane proteins and glycoproteins has been studied in rat intestinal crypt and villus cells by measuring the incorporation of L-[5,6-3H] fucose, D-[2-3H] mannose and L-[3,4,5-3H] leucine, given intraperitoneally, into Golgi, lateral-basal and luminal membranes. Incorporation of leucine and mannose was approximately equal in crypt and villus cells, whereas fucose incorporation was markedly higher (3-4 times) in the differentiated villus cells. As previously reported [Quaroni, Kirsch & Weiser (1979) Biochem J. 182. 203-212] most of the fucosylated glyco-proteins synthesized in the villus cells and initially present in the Golgi and lateral-basal membranes were found re-distributed, within 3-4h of label administration, in the luminal membrane. A similar process appeared to occur in the crypt cells, where, however, only few fucose-labelled glycoproteins were identified. In contrast, most of the leucine-labelled and many mannose-labelled membrane components found in the lateral-basal membrane of both crypt and villus cells did not seen to undergo a similar re-distribution process. The fucosylated glycoproteins of the intestinal epithelial cells represent, therefore, a special class of membrane components, most of which appear with differentiation, that are selectively localized in the luminal portion of the plasmalemma. In contrast with the marked differences in protein and glycoprotein patterns between the luminal membrane of villus and crypt cells, only minor differences were found between their lateral-basal membrane components: their protein patterns on sodium dodecyl sulphate/polyacrylamide slab gels, and the patterns of fucose-, mannose- and leucine-labelled components (analysed 3-4h after label administration) were very similar. Although the minor differences detected may be of importance, it appears that most of the surface-membrane changes accompanying cell differentiation in the intestinal epithelial cells are localized in the luminal portion of their surface membrane.  相似文献   

7.
Rat small intestinal epithelial cell lines have been established in vitro and subcultured serially for periods up to 6 mo. These cells have an epithelioid morphology, grow as monolayers of closely opposed polygonal cells, and during the logarithmic phase of growth have a population doubling time of 19--22 h. Ultrastructural studies revealed the presence of microvilli, tight junctions, an extensive Golgi complex, and the presence of extracellular amorphous material similar in appearance to isolated basement membrane. These cells exhibit a number of features characteristic of normal cells in culture; namely, a normal rat diploid karyotype, strong density inhibition of growth, lack of growth in soft agar, and a low plating efficiency when seeded at low density. They did not produce tumors when injected in syngeneic animals. Immunochemical studies were performed to determine their origin using antisera prepared against rat small intestinal crypt cell plasma membrane, brush border membrane of villus cells and isolated sucrase-isomaltase complex. Antigenic determinants specific for small intestinal epithelial (crypt and villus) cells were demonstrated on the surface of the epithelioid cells, but they lacked immunological determinants specific for differentiated villus cells. An antiserum specifically staining extracellular material surrounding the cells cultured in vitro demonstrated cross-reactivity to basement membrane in rat intestinal frozen sections. It is concluded that the cultured epithelioid cells have features of undifferentiated small intestinal crypt cells.  相似文献   

8.
The physical state of the membrane lipid of brush border membranes, prepared from rat small intestinal villus and crypt cells, was examined by steady-state fluorescence polarization using three lipid-soluble fluorophors. Membranes prepared from crypt cells were found to possess a higher lipid fluidity than those of villus cells with each probe. Analysis of the composition of these membranes revealed that those from crypt cells had lower ratios of cholesterol/phospholipid (mol/mol), protein/lipid (w/w), and saturated fatty acyl chains/unsaturated chains (w/w). Alterations in the levels of stearic (18:0) and oleic (18:1) acids were responsible for differences in the latter ratio. The results, therefore, demonstrate that alterations in the lipid composition and fluidity of brush border membranes of enterocytes occur during the process of differentiation.  相似文献   

9.
A panel of monoclonal antibodies to intestinal cell surface components has been used to compare the expression of differentiation-specific antigens in the epithelial cells of fetal, suckling, and adult rat small intestine. Indirect immunofluorescence staining, and immunopurification of detergent-solubilized membrane proteins, followed by single- and two-dimensional slab gel electrophoretic analysis, have demonstrated that fetal intestinal cells (at day 21 of gestation) express most differentiation-specific markers typical of adult absorptive villus cells. A marked heterogeneity in antigen expression was observed among different villus cell populations in suckling rat intestine, and three cell surface components were identified which are exclusively present during this period of intestinal development. Striking changes in the patterns of antigen expression in crypt and villus cells, and variations in the apparent isoelectric points for most luminal membrane components, were associated with the maturation of the intestinal mucosa at weaning. These changes could not be prematurely induced by cortisone injection in newborn rats, suggesting that factors other than glucocorticoids are responsible for the postnatal development of the intestinal epithelium. These results suggest that basic differences in biological properties and regulatory mechanisms exist among intestinal epithelial cells at different stages of pre- and postnatal maturation.  相似文献   

10.
The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 - reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissue-specific subset of keratins which are related to the differentiation of the cells.  相似文献   

11.
The morphogenesis of filiform papillae on rat tongue was investigated with the electron microscope. Tongue rudiments were first seen on the 12th day of gestation. At 15-17 days, dermal papillae had formed and were arranged in hexagonal array on the dorsal lingual surface. Capping each dermal papilla was a two-layered epithelium that protruded slightly above the lingual surface, thus forming the early filiform papilla. In the next stage of development, at 18-19 days of gestation, the epithelium lining the papilla had differentiated into two cell populations, one producing hard keratin, the other producing soft keratin. Some of the keratinized epithelial cells assumed a position at an acute angle to the tongue surface and extended deep into the epithelium. In the next stage, 20-21 days, a cleft appeared within these angularly oriented cells. This resulted in the division of the epithelium into keraatin-lined individual filiform papillae. Finally, the individual papillae increased in size to the adult form.  相似文献   

12.
Expression and synthesis of sucrase-isomaltase (SI) were studied in human jejunum and in the colon tumor cell lines Caco-2 and HT-29. Twelve monoclonal antibodies produced against the adult human intestinal enzyme were shown to recognize specifically SI by immunoprecipitation of 14C-labeled membrane proteins, analysis of enzyme activities in the immunoprecipitates, and immunoblotting. These antibodies produced markedly different patterns of immunofluorescent staining of the intestinal mucosa. Three of them were specific for the absorptive villus cells, while the other nine also stained the luminal membrane of the proliferative crypt cells, with different intensities which paralleled their ability to recognize SI in immunoblots. Sequential immunoprecipitation of SI solubilized from purified brush borders or entire jejunum with four selected antibodies demonstrated the presence of different forms of the enzyme, expressed by either villus or crypt cells. Two immunologically distinct forms of high mannose precursor (hmP1 and hmP2) were also identified in both jejunal mucosa and colon tumor cells. They were present as monomers and their immunological differences were preserved under various ionic and pH conditions. Pulse-chase studies indicated that, in Caco-2 cells, hmP1 is converted into hmP2 within 30 min of chase, and hmP2 is then processed into the complex-glycosylated precursor destined for the brush border membrane. hmP1 was immunologically related to the mature SI present in crypt cells and lacked the epitopes specific for mature SI expressed by villus cells. These results demonstrated that sucrase-isomaltase is synthesized by both crypt and villus cells, but processing of the cotranslationally glycosylated high mannose precursor is dependent on the state of differentiation of the enterocytes. This may represent a general mechanism for the regulation of expression of differentiated cell products at the post-translational level.  相似文献   

13.
Expression of actin isoforms in developing rat intestinal epithelium   总被引:1,自引:0,他引:1  
A minimum of six very similar but distinct actin isoforms are encoded by the mammalian genome. Developmental regulation of these genes results in a tissue-specific distribution of the isoforms in the adult. Using a panel of actin specific monoclonal antibodies (MAb), we recently reported the expression of two unique actin isoforms in adult rat intestinal brush border. In this report, we examine the developmental expression of these and other actin isoforms in rat intestinal epithelial cells. Isoforms containing the HUC 1-1 and/or C4 epitopes are present by day 15 of gestation and are continuously expressed throughout adult life. Unexpectedly, the gamma-enteric smooth muscle isoactin, defined by the B4 epitope, is transiently expressed in these non-muscle cells late in gestation. The alpha-vascular smooth muscle isoform, however, is not expressed in intestinal epithelial cells during development and, as previously reported, both smooth muscle isoforms are absent in epithelial cells of adult intestine. In addition, we demonstrate that although multiple isoforms are expressed simultaneously in these cells, they are not uniformly distributed at the subcellular level, suggesting that the cell recognizes the actin isoforms as functionally distinct entities.  相似文献   

14.
15.
Crypt cell development in newborn rat small intestine   总被引:4,自引:1,他引:3       下载免费PDF全文
Three monoclonal antibodies were prepared against luminal membranes from small intestinal cells of 3-d-old rats (YBB 1/27, YBB 3/10) and crypt cell membranes from adult rats (CC 4/80). The antibodies were shown to define specific stages of development of the intestinal crypt cells. The YBB 1/27 antigen was first detected at the luminal membrane of the epithelial cells in fetal intestine at day 20 of gestation; it was confined to the crypt cells and lower villus cells between 1 and 20-22 d after birth, and could not be detected in any region of the intestine in older animals. The YBB 3/10 antigen, identified as a set of high Mr proteins, was localized over the entire surface membrane of fetal intestinal cells and of crypt and villus cells after birth; after weaning (20-22 d after birth) it gradually disappeared from the villus cells and became confined to the region of the crypts. The CC 4/80 antigen, identified as a protein (or a set of related proteins) of molecular mass 28-34 kD, was shown to appear in the crypt cells 10-14 d after birth. Its distribution changed after weaning, when it disappeared from the crypts, and was localized in the absorptive lower villus cells. This change in pattern could, in part, be prematurely elicited by cortisone injection in younger animals. These results have demonstrated the presence of specific surface membrane components on the intestinal crypt cells, and suggested that fetal antigens may be retained in these cells after birth.  相似文献   

16.
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.  相似文献   

17.
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model system, we have examined PKC-specific activity as well as individual PKC isozyme expression and distribution (i.e., activation status) in epithelial cells in situ. Increased PKC activity was detected in differentiating and functional cells relative to immature proliferating crypt cells. Immunofluorescence and Western blot analysis using a panel of isozyme- specific antibodies revealed that PKC alpha, beta II, delta, epsilon, and zeta are expressed in rat intestinal epithelial cells and exhibit distinct subcellular distribution patterns along the crypt-villus unit. The combined morphological and biochemical approach used permitted analysis of the activation status of specific PKC isozymes at the individual cell level. These studies showed that marked changes in membrane association and level of expression for PKC alpha, beta II, delta, and zeta occur as cells cease division in the mid-crypt region and begin differentiation. Additional changes in PKC activation status are observed with acquisition of mature function on the villus. These studies clearly demonstrate naturally occurring alterations in PKC isozyme activation status at the individual cell level within the context of a developing tissue. Direct activation of PKC in an immature intestinal crypt cell line was shown to result in growth inhibition and coincident translocation of PKC alpha from the cytosolic to the particulate subcellular fraction, paralleling observations made in situ and providing further support for a role of intestinal PKC isozymes in post-mitotic events. PKC isozymes were also found to be tightly associated with cytoskeletal elements, suggesting participation in control of the structural organization of the enterocyte. Taken together, the results presented strongly suggest an involvement of PKC isoforms in cellular processes related to growth cessation, differentiation, and function of intestinal epithelial cells in situ.  相似文献   

18.
Summary The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 — reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissuspecific subset of keratins which are related to the differentiation of the cells.  相似文献   

19.
The achromatic epithelial cells (AEC), whose cellular materials remain unstained by several stains, e. g., H.E, PAS, Alcian blue, Orange G Anilin blue and Mucicarmin, are detected in the intestinal mucous epithelium of the Iar: Wistar Imamichi rat from the 19th day of gestation to the 21st day after birth. The results of light microscopic and transmission electron microscopic observations suggest that the rats AEC are equivalent to the previously reported vacuolar cells (VC) in cattle and in mice. The present paper describes that rat intestinal AEC appear first in the small intestine, and spread progressively toward the anal direction, while they disappear first in the cecum, and finally disappear at the ileum and the colon 22 days after birth.  相似文献   

20.
The major sialic acid containing glycolipid has been isolated from rat intestinal mucosa. Characterization of this ganglioside by thin layer and gas chromatographic analysis indicates that it is an hematoside (GM3) with the major portion of the sialic acid in the N-glycolyl form. The distribution of this ganglioside was determined in villus and crypt cells isolated from rat intestine. The hematoside content of crypt cells was found to be significantly decreased when compared to villus cells. CMP-sialic acid:lactosylceramide sialyltransferase, responsible for the sialylation of lactosylceramide, was measured in differentiated villus and undifferentiated crypt cells and found to be greatly reduced in the crypt cell fraction. The present study demonstrates that marked differences in ganglioside content and biosynthesis occur in contiguous populations of cells in varying states of differentiation when isolated from normal rat intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号