首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of thyroid hormones on human breast cancer cell proliferation   总被引:1,自引:0,他引:1  
The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17β-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression.  相似文献   

2.
3.
4.
5.
Translation of the small G protein RhoA in neurons is regulated by the eukaryotic translation initiation factor eIF4E. Here we show that this translation factor also regulates RhoA expression and activity in breast cancer cells. The introduction of eIF4E into breast tumor cells increased RhoA protein levels, while expression of an eIF4E siRNA reduced RhoA expression. Previous studies indicate that the axon repulsion factor Semaphorin3A (Sema3A) stimulates the eIF4E-dependent translation of RhoA in neurons, and breast tumor cells support autocrine Sema3A signaling. Accordingly, we next examined if autocrine Sema3A signaling drives eIF4E-dependent RhoA translation in breast cancer cells. The incubation of breast tumor cells with recombinant Sema3A rapidly increased eIF4E activity, RhoA protein levels, and RhoA activity. This Sema3A activity was blocked in tumor cells expressing an shRNA-specific for the Sema3A receptor, Neuropilin-1 (NP-1), as well as in cells incubated with an eIF4E inhibitor. Importantly, RhoA protein levels were reduced in Sema3A shRNA-expressing compared to control shRNA-expressing breast tumor cells, demonstrating that autocrine Sema3A increases RhoA expression in breast cancer. Considering that Sema3A suppresses axon extension by stimulating RhoA translation, we next examined if the Sema3A/RhoA axis impacts breast tumor cell migration. The incubation of control breast tumor cells, but not RhoA shRNA-expressing cells, with rSema3A significantly reduced their migration. Collectively, these studies indicate that Sema3A impedes breast tumor cell migration in part by stimulating RhoA. These findings identify common signaling pathways that regulate the navigation of neurons and breast cancer cells, thus suggesting novel targets for suppressing breast tumor cell migration.  相似文献   

6.
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27Kip1. Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.  相似文献   

7.
Progesterone action in target tissues is mediated through two progesterone receptor (PR) isoforms, PR-A and PR-B, which display different regulatory functions in target cells. Relative expression ratio of these isoforms varies depending on cell and tissue types. Here, we studied the regulation of PR isoform expression by estradiol (E(2)), insulin, IGF-1 and cAMP in different breast cancer cell lines. Although, E(2) induced PR expression in all cell lines studied, the expression ratio of PR-A/PR-B induced by E(2) was dependent on the cell line. The differential regulation of the isoforms was also seen at the mRNA level suggesting that the PR-A and PR-B promoters are differentially regulated by E(2) in different breast cancer cells. Insulin, IGF-1 or cAMP previously reported to induce PR expression however failed to alter the PR expression in our study. This is the first report describing that in different breast cancer cell lines the expression of PR-A and PR-B is regulated by E(2) in a distinct way.  相似文献   

8.
9.
10.
Estradiol (E(2)) is an important risk factor in the development and progression of breast cancer. However, a "direct effect" of E(2) in breast cancerization has not yet been demonstrated. The estrogen receptor complex can mediate the activation of oncogens, proto-oncogens, nuclear proteins and other target genes that can be involved in the transformation of normal to cancerous cells. Breast cancer cells possess all the enzymes (sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD)) necessary for the local bioformation of E(2). In the last years, many studies have shown that treatment of breast cancer patients using anti-aromatase agents has beneficial therapeutic effects. The aromatase activity is very low in most breast cancer cells but was significantly increased in a hormone-dependent breast cancer cell line: the MCF-7aro, using the aromatase cDNA transfection and G-418 (neomycin) selection. In the present study, we explore the effect of E(2) on the aromatase activity of this cell line. The MCF-7aro cell line was a gift from Dr. S. Chen (Beckman Research Institute, Duarte, U.S.A.). For experiments the cells were stripped of endogenous steroids and incubated with physiological concentrations of [(3)H]-testosterone (5 x 10(-9)mol/l) alone or in the presence of E(2) (5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol/l) for 24h at 37 degrees C. The cellular radioactivity uptake was determined in the ethanolic supernatant and the DNA content in the remaining pellet. [(3)H]-E(2), [(3)H]-estrone ([(3)H]-E(1)) and [(3)H]-testosterone were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [(3)H]-testosterone is converted mainly into [(3)H]-E(2) and not to E(1), which suggests very low or absence of oxidative 17beta-HSD (type 2) activity in these experimental conditions. The aromatase activity, corresponding to the conversion of [(3)H]-testosterone to [(3)H]-E(2) after 24h, is relatively high, since the concentration of E(2) was 2.74+/-0.11pmol/mg DNA in the non-treated cells. E(2) inhibits this conversion by 77, 57 and 21%, respectively, at the concentrations of 5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol. In previous studies, it was demonstrated that E(2) exerts a potent anti-sulfatase activity in the MCF-7 and T-47D breast cancer cells. The present data show that E(2) can also block the aromatase activity. The dual inhibition of the aromatase and sulfatase activities, two crucial enzymes for the biosynthesis of E(2) by E(2) itself in breast cancer add interesting and attractive information for the use of estrogen therapeutic treatments.  相似文献   

11.
Alterations in calcium signaling and/or the expression of calcium pumps and channels are an increasingly recognized property of some cancer cells. Alterations in the expression of plasma membrane calcium ATPase (PMCA) isoforms have been reported in a variety of cancer types, including those of breast and colon, with some studies of cancer cell line differentiation identifying specific PMCA isoforms, which may be altered in some cancers. Some studies have also begun to assess levels of PMCA isoforms in clinical tumor samples and to address mechanisms of altered PMCA expression in cancers. Both increases and decreases in PMCA expression have been reported in different cancer types and in many cases these alterations are isoform specific. In this review, we provide an overview of studies investigating the expression of PMCA in cancer and discuss how both the overexpression and reduced expression of a PMCA isoform in a cancer cell could bestow a growth advantage, through augmenting responses to proliferative stimuli or reducing sensitivity to apoptosis.  相似文献   

12.
Previous studies have shown that vasoactive intestinal peptide (VIP) and its receptors (VPAC(1) and VPAC(2) receptors) are involved in promotion and growth of many human tumours including breast cancer. Here we investigated whether VIP regulates the expression of the main angiogenic factor, vascular endothelial cell growth factor (VEGF) in human oestrogen-dependent (T47D) and oestrogen-independent (MDA-MB-4687) breast cancer cells. Semiquantitative and quantitative real-time RT-PCRs were used at mRNA level whereas enzyme immunoanalysis was performed at protein level. Both cancer cell lines expressed VIP and VPAC(1) (but not VPAC(2)) receptors that were functional as shown by VIP stimulation of adenylate cyclase activity. VIP induced VEGF expression at both mRNA and protein levels following a time-dependent pattern. The responses were faster in T47D than in MDA-MB-468 cells. The observed VIP regulation of VEGF expression appears to be modulated at least by the cAMP/protein kinase A (PKA) and the phosphoinositide 3-kinase (PI3-K) signalling systems as shown by studies of adenylate cyclase stimulation and using specific kinase inhibitors such as H89 and wortmannin. These actions suggest a proangiogenic potential of VIP in breast cancer.  相似文献   

13.
Salt-inducible kinases 3 (SIK3) belong to the AMPK-related family of kinases, which have been implicated in the regulation of cell metabolism, cell polarity remodelling, and epithelial–mesenchymal transition. Elevated SIK3 expressions in breast cancer cells are shown to contribute to tumorigenesis; however, the underlying mechanism remains to be elucidated. In this study, we demonstrate that SIK3 expression is upregulated and concurrently high expression of SIK3 is associated with poor survival in breast cancer. Specifically, SIK3 knockdown revealed that SIK3 is required for the mTOR/Akt signaling pathway and proliferation of breast cancer cells. Furthermore, our findings showed that Emodin (EMO) combined with Berberine (BBR) significantly inhibited SIK3 activity, leading to reduced cell growth, increased cell cycle arrest and apoptosis in breast cancer cells, but not in non-malignant breast epithelial cell line. Mechanistic studies further reveal that EMO and BBR in combined treatment inhibited SIK3-potentiated mTOR-mediated aerobic glycolysis and cell growth in breast cancer cells. Moreover, combination treatments attenuate Akt signaling, thereby inducing G0/G1 phase cell cycle arrest and apoptosis of breast cancer cells in a SIK3-dependent manner. CRISPR/Cas9 or siRNA-mediated SIK3 knockout/knockdown showed an opposite trend in both the luminal and basal-like breast cancer. Collectively, our findings reveal that combination of EMO and BBR attenuates SIK3-driven tumor growth in breast cancer, and thus, EMO and BBR might be a novel SIK3 inhibitor explored into the prevention of breast cancer.  相似文献   

14.
There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.  相似文献   

15.
16.
17.
18.
19.
The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40–70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.  相似文献   

20.
Estrogens play a key role in the development and evolution of breast cancer tumors. Estrogen receptor alpha (ERalpha) mediates many of the biological activities of estrogens, and its expression is associated with low invasiveness and good prognosis. Recent epidemiological reports suggest that long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is implicated in the increased incidence of breast cancer in exposed women. TCDD interferes with the expression of some ERalpha-dependent genes and inhibits estradiol (E2)- dependent growth of breast cancer cells in vitro. However, E2-dependent xenographs of MCF-7 human breast cancer cells resumed growth after a 2-week exposure to TCDD. The mechanisms involved in the resumption of cell growth are not completely understood. In this study, we show that short term-exposure (16 days) to 1 nM TCDD results in the suppression of ERalpha protein expression, while chronic exposure for more than 1 year (LTDX cells) results in the partial re-expression of the receptor. Immunocytochemistry studies showed that re-expression of ERalpha in LTDX cells occurred in some of the cells. Analysis by Western immunoblots indicated that four out of five LTDX clones expressed ERalpha at levels comparable to those in unexposed MCF-7 cells. Removal of TCDD treatment for 16 days restored the expression of ERalpha in the ERalpha-negative clonal cells. These results suggest that MCF-7 cells chronically exposed to TCDD contain at least two cell subpopulations that may respond differently to the ERalpha-mediated effects of TCDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号