首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hen egg-white lysozyme, lyophilized from aqueous solutions of different pH (from pH 2.5 to 10.0) and then dissolved in water and in anhydrous glycerol, has been studied by high-sensitivity differential scanning microcalorimetry over the temperature range from 10 to 150 degrees C. All lysozyme samples exhibit a cooperative conformational transition in both solvents occurring between 10 and 100 degrees C. The transition temperatures in glycerol are similar to those in water at the corresponding pHs. The transition enthalpies in glycerol are substantially lower than in water but follow similar pH dependences. The transition heat capacity increment in glycerol does not depend on the pH and is 1.25+/-0.31 kJ mol(-1) K(-1), which is less than one fifth of that in water (6. 72+/-0.23 kJ mol(-1) K(-1)). The thermal transition in glycerol is reversible and equilibrium, as demonstrated for the pH 8.0 sample, and follows the classical two-state mechanism. In contrast to lysozyme in water, the protein dissolved in glycerol undergoes an additional, irreversible cooperative transition with a marginal endothermic heat effect at temperatures of 120-130 degrees C. The transition temperature of this second transition increases with the heating rate which is characteristic of kinetically controlled processes. Thermodynamic analysis of the calorimetric data reveals that the stability of the folded conformation of lysozyme in glycerol is similar to that in water at 20-80 degrees C but exceeds it at lower and higher temperatures. It is hypothesized that the thermal unfolding in glycerol follows the scheme: N ifho-MG-->U, where N is a native-like conformation, ho-MG is a highly ordered molten globule state, and U is the unfolded state of the protein.  相似文献   

2.
Thermostability of alpha-chymotrypsin at normal pressure in reversed micelles depends on both an effective surfactant solvation degree and glycerol content in the system. The difference in alpha-chymotrypsin stability in reversed micelles at various glycerol concentrations [up to 60% (v/v)] was more pronounced at high surfactant degrees of solvation, R >/= 16. After a 1-h incubation at 40 degrees C in "aqueous" reversed micelles (in the absence of glycerol), alpha-chymotrypsin retained only 1% of initial catalytic activity and 10, 22, 59, and 48% residual activity in glycerol-solvated micelles with 20, 30, 50, and 60% (v/v) glycerol, respectively. The explanation of the observed effects is given in the frames of micellar matrix structural order increasing in the presence of glycerol as a water-miscible cosolvent that leads to the decreasing mobility of the alpha-chymotrypsin molecule and, thus the increase of its stability. It was found that glycerol or hydrostatic pressure could be used to stabilize alpha-chymotrypsin in reversed micelles; a lower pressure is necessary to reach a given level of enzyme stability in the presence of glycerol.  相似文献   

3.
Plasma membrane ghosts were isolated from Candida albicans ATCC 10261 yeast cells following stabilisation of spheroplasts with concanavalin A, osmotic lysis and Percoll density gradient centrifugation. Removal of extrinsic proteins with NaCl and methyl alpha-mannoside gave increased ATPase and chitin synthase specific activities in the resultant plasma membrane fraction. Sonication of this fraction yielded unilamellar plasma membrane vesicles which exhibited ATPase and chitin synthase specific activities of 4.5-fold and 3.0-fold, respectively, over those of the plasma membrane ghosts. ATPase activity in the membrane ghosts was optimal at pH 6.4, showed high substrate specificity (for Mg X ATP) and was inhibited 80% by sodium vanadate but less than 4% by oligomycin and azide. The effects of a range of other inhibitors were also characterised. Temperature effects of ATPase activity were marked, with a maximum at 35 degrees C. Breaks in the Arrhenius plot, at 12.2 degrees C and 28.9 degrees C, coincided with endothermic heat flow peaks detected by differential scanning calorimetry. ATPase was solubilised from the plasma membranes with Zwittergent in the presence of glycerol and phenylmethylsulphonyl fluoride and partially purified by glycerol density gradient centrifugation. The solubilised enzyme hydrolysed Mg X ATP at Vmax = 20 mumol X min-1 X mg-1 in the presence of phospholipids, with optimal activity at pH 6.0--6.5.  相似文献   

4.
The interaction of glycerol concentration from 0 to 16% and cooling velocity from 1 to 100 degrees C/min on freeze-thaw survival of ram spermatozoa was studied using a diluent based on 15% skim milk (450 mOs/kg water). Optimal spermatozoa survival (percentage motility and rating) was obtained with 4 to 6% glycerol and freezing rates of 10 to 100 degrees C/min. Similar results were obtained with 8% glycerol at freezing rates of 5 to 30 degrees C/min. Although the ram spermatozoa tolerated several cooling velocities at each glycerol concentration, increasing the concentration of glycerol resulted in a downshift in the range of optimal cooling velocities. Glycerol concentrations above 8% were toxic and contributed greatly to the progressive decrease in spermatozoa survival. Comparison of the 15% skim milk diluent (450 mOs/kg water) with a 19% skim milk diluent (600 mOs/kg water) showed that optimal cryosurvival was obtained with 4 to 6% glycerol and freezing rates of 10 to 100 degrees C/min with both diluents.  相似文献   

5.
1. Cod chymotrypsin displays higher enzyme activity compared to bovine alpha-chymotrypsin when assayed at low temperatures (3-15 degrees C). 2. Both enzymes are inactivated when incubated at temperatures between 60 and 70 degrees C. 3. When incubated at 99 degrees C the cod enzyme retains about 50% of the initial activity measured at room temperature. 4. Preincubation at boiling temperature renders the cod chymotrypsin active at 70 degrees C whereas the bovine enzyme is rapidly inactivated.  相似文献   

6.
Salmon calcitonin solutions (50 mg/mL and 100 mg/mL) were placed on stability at 37 degrees C for 1 year in a variety of solvent systems including water, ethanol, glycerol, propylene glycol (PG) and dimethyl sulfoxide (DMSO). Calcitonin degradation was monitored by RP-HPLC and size-exclusion chromatography. DMSO and pH 3.3 solutions provided optimum stability. Conformational stability was also monitored by FTIR over the 1 year time course and compared with chemical and physical stability. After 12 months at 37 degrees C, four major conformations were observed: a beta-sheet conformation (pH 3.3, pH 5.0, 70% DMSO and 70% glycerol), an aggregate conformation (pH 7.0 water), a strong alpha-helical conformation (70% EtOH, 70% PG) and a weak alpha-helical conformation (100% DMSO). No correlation between structure and chemical stability was observed in which both the beta-sheet structure (pH 3.3, water) and a loose alpha-helical structure (100% DMSO) demonstrated good stability. However, some correlation was observed between structure and physical stability, where co-solvents inducing an alpha-helical structure resulted in a decrease in gelation. These two structural states associated with improved stability and minimal gelation, indicated that gelation can be reduced or eliminated by the use of pharmaceutically acceptable co-solvents. Finally, salmon calcitonin (50 mg/mL) was formulated in 100% DMSO and delivered from a DUROS implant over 4 months. Delivery at a target dose of 18 microg/day calcitonin at 37 degrees C was confirmed.  相似文献   

7.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

8.
An alkalophilic Aspergillus nidulans KK-99 produced an alkaline, thermostable xylanase (40 IU/ml) in a basal medium supplemented with wheat bran (2% w/v) and KNO3 (at 0.15% N) pH 10.0 and 37 degrees C. The partially purified xylanase was optimally active at pH 8.0 and 55 degrees C. The xylanase was stable in a broad pH range of 4.0-9.5 for 1 h at 55 degrees C, retaining more than 80% of its activity. The enzyme exhibited greater binding affinity for xylan from hardwood than from softwood. The xylanase activity was stimulated (+25%) by Na+ and Fe2+ and was strongly inhibited (maximum by 70%) by Tween-20, 40, 60, SDS, acetic anhydride, phenylmethane sulphonyl fluoride, Triton-X-100. The xylanase dose of 1.0 IU/g dry weight pulp gave optimum bleach boosting of Kraft pulp at pH 8.0 and temperature 55 degrees C for 3 h reaction time.  相似文献   

9.
The desorption of Trichoderma reesei cellulase from Avicel by a wide range of desorbents was measured. Emphasis was placed on desorption at alkaline pH. A maximum desorption of 65-68% Avicelase activity was achieved by contact with NaOH, pH 10.0, at 40 degrees C for 5 min in the presence of 0.005% Triton X-100 or Tween 80. The design of a suitable desorption process using these conditions is discussed. Glycerol was also effective as a desorbent either alone or in combination with alkali and detergent. However, relatively high concentrations of glycerol were needed and the maximum desorption achieved, 68%, was not significantly greater than that with only alkali and detergent.  相似文献   

10.
Recombinant mouse thymidylate synthase (TS) expressed at high levels in Escherichia coli was purified to homogeneity in greater than 70% yield by a rapid three-step procedure. Both 0.1% Triton X-100 and 10% glycerol were required to stabilize the enzyme whose activity remained unchanged after 1 month when stored at -20 degrees C. Thermal inactivation of the enzyme was a first-order process at 37 degrees C, with t1/2 values of 6.9, 15.6 and 3.0 min at pH 5.5, 7.0 and 8.5, respectively. The presence of saturating levels of dUMP at pH 8.5 increased the t1/2 of inactivation of 38 min. The pH profile for enzyme activity showed a narrow optimum region centered at pH 7.0, which was mirrored by the shape of the Km, dUMP/Vmax plot. The pH dependence of Kd for the covalent inhibitory ternary complex of enzyme, 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate exhibited a broad minimum between pH 5.5 and 8.5, and ranged between 3.1, 0.8 and 1.1 nM at pH 5.5, 7.0 and 8.5, respectively. The UV/VIS spectrum of the native enzyme exhibited a maximum at 280 nm (epsilon = 98,200 M-1 cm-1), while that of the inhibitory ternary complex showed an additional maximum at 320 nm. The 19F-NMR spectrum of the mouse enzyme:FdUMP binary complex revealed two new resonances at -2.8 and -34.8 ppm. The most deshielded resonance represented the noncovalent binary complex while the other resonance was assigned to the nucleotide covalently bound to the enzyme. The alteration of nucleotide binding equilibria produced by addition of H4 folate was exemplified by both an increase in intensity and a 5 ppm deshielding of the resonance attributed to the covalent FdUMP-enzyme complex. Addition of formaldehyde to the latter mixture produced the covalent ternary complex which resulted in the collapse of the resonances at -2.8 and -39.5 ppm and the appearance of a new resonance at -12.4 ppm.  相似文献   

11.
Hydrolysis of glycerol trioleate by human leucocytes was characterized and the enzymes responsible for this activity were obtained in a purified form by means of gel chromatography on Sephadex G-100 as well as by zonal ultracentrifugation followed by gel chromatography. The activity is localized in the granule fraction of leucocytes (15 000 X g, 20 min) and shows a sharp pH optimum at pH 5.25. As judged from the elution profile obtained by gel chromatography, two proteins are likely to contribute to the hydrolysis of glycerol trioleate. The approximate molecular weights of the two enzymes are 74 100 and 60 300, respectively. The activity is reduced in the presence of NaCl, KCl, CaCl2 as well as of p-hydroxymercuribenzoate. The enzymes are stable at -25 degrees C but loose about 50% of their activity within 48 h at 4 degrees C.  相似文献   

12.
Elevated hydrostatic pressure has been used to increase catalytic activity and thermal stability of alpha-chymotrypsin (CT). For an anilide substrate, characterized by a negative value of the reaction activation volume (DeltaV( not equal)), an increase in pressure at 20 degrees C results in an exponential acceleration of the hydrolysis rate catalyzed by CT reaching a 6.5-fold increase in activity at 4700 atm (4.7 kbar). Due to a strong temperature dependence of DeltaV( not equal), the acceleration effect of high pressure becomes more pronounced at high temperatures. For example, at 50 degrees C, under a pressure of 3.6 kbar, CT shows activity which is more than 30 times higher than the activity at normal conditions (20 degrees C, 1 atm). At pressures of higher than 3.6 kbar, the enzymatic activity is decreased due to a pressure-induced denaturation.Elevated hydrostatic pressure is also efficient for increasing stability of CT against thermal denaturation. For example, at 55 degrees C, CT is almost instantaneously inactivated at atmospheric pressure, whereas under a pressure of 1.8 kbar CT retains its anilide-hydrolyzing activity during several dozen minutes. Additional stabilization can be achieved in the presence of glycerol, which is most effective for protection of CT at an intermediate concentration of 40% (v/v). There has been observed an additivity in stabilization effects of high pressure and glycerol: thermal inactivation of pressure-stabilized CT can be decelerated in a supplementary manner by addition of 40% (v/v) glycerol. The protection effect of glycerol on the catalytic activity and stability of CT becomes especially pronounced when both extreme factors of temperature and pressure reach critical values. For example, at approximately 55 degrees C and 4.7 kbar, enzymatic activity of CT in the presence of 40% (v/v) glycerol is severalfold higher than in aqueous buffer.The results of this study are discussed in terms of the hypotheses which explain the action of external and medium effects on protein structure, such as preferential hydration and osmotic pressure. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.  相似文献   

14.
A study was made of the immobilization of alpha-chymotrypsin (alpha-CT) onto a previously well characterized synthetic polyurethane grafted with acrylic acid P(U-g-AA). The P(U-g-AA) had previously been prepared using 2,2'-azo-bis-isobutyronitrile (AIBN) as a radical initiator and acrylic acid as monomer in the presence of an unsaturated polyurethane in solution at 60 degrees C. Some kinetic parameters of both the native enzyme and the enzyme immobilized on the P(U-g-AA) were evaluated. Using a Lineweaver-Burk plot (double reciprocal), it was found that the Michaelis-Menten constant (Km(for the immobilized enzyme was (4.0 +/- 0.9) x 10(-3) M and that of the free enzyme was (3.0 +/- 0.2) x 10(-3) M. The enzyme alpha-chymotrypsin was immobilized on the grafted polyurethane micelles/aggregates with about 45% retention of activity. Also the immobilized alpha-CT retained this activity for at least 6 weeks. The immobilized enzyme was found to have a maximum stability at 43 degrees C compared with 36 degrees C in the case of free enzyme, and the pH optimum was shifted from pH 6.6 to pH 8.2. The long-term operational stability of the enzyme was investigated and this is of interest since the enzyme is probably trapped physically in a micellar environment. The assay of the enzyme was carried out in 0.01 M phosphate buffer, pH 7.5, using p-nitrophenyl acetate as a substrate. No inhibition of alpha-CT in the presence of the synthetic ungrafted and grafted polyurethane was observed.  相似文献   

15.
A soil isolate of Bacillus stearothermophilus was found to synthesize thermostable alpha-amylase. The enzyme was purified to homogeneity by ammonium sulfate fractionation and IECC on DEAE-cellulose column. The purified enzyme was considered to be a monomeric protein with a molar mass of 64 kDa, as determined by SDS-PAGE. The enzyme showed a wide range of pH tolerance and maximum activity at pH 7.0. The temperature tolerance was up to 100 degrees C with more than 90% catalytic activity; the maximum activity was observed at 50 degrees C. Divalent metal ions exhibited inhibitory effect on the enzyme activity. However, proteinase inhibitor did not react positively.  相似文献   

16.
The preservation of the proteolytic activity of a bovine spleen lysosomal-enriched (BSLE) extract was investigated. The BSLE extract (pH = 5.8), was subjected to storage under different conditions: refrigeration at 0 degrees C for 60 days; freezing at -20 degrees C -either directly or previously frozen in liquid nitrogen-, -80 degrees C and in liquid nitrogen; freeze-drying and stored at 0 degrees C; and freezing at -20 degrees C or in liquid nitrogen in the presence of glycerol and sorbitol as cryoprotectants. Freezing at low temperatures (-80 degrees C and in liquid nitrogen) was most effective for preserving about 100% of the initial activity of all cathepsins (B, B+L and D), as well as the activity of the extract on myofibrils, for two years. Freezing at -20 degrees C, on the contrary, led to significant (P < 0.01) losses of activity. Freeze-drying was able to preserve cathepsin activity, while it failed to maintain activity on myofibrils. Both cryoprotectants sorbitol and glycerol significantly (P < 0.01) enhanced enzyme preservation, particularly cathepsin D and the activity on myofibrils, even at a freezing temperature of -20 degrees C.  相似文献   

17.
We have used ultrasonic velocimetry, high-precision densimetry, and fluorescence spectroscopy, in conjunction with isothermal titration and differential scanning calorimetry, to characterize the binding of turkey ovomucoid third domain (OMTKY3) to alpha-chymotrypsin. We report the changes in volume and adiabatic compressibility that accompany the association of these proteins at 25 degrees C and pH 4.5. In addition, we report the changes in free energy, enthalpy, entropy, and heat capacity upon the binding of OMTKY3 to alpha-chymotrypsin over a temperature range of 20-40 degrees C. Our volume and compressibility data, in conjunction with X-ray crytsallographic data on the OMTKY3-alpha-chymotrypsin complex, suggest that 454(+/-22) water molecules are released to the bulk state upon the binding of OMTKY3 to alpha-chymotrypsin. Furthermore, these volumetric data suggest that the intrinsic compressibility of the two proteins decreases by 7%. At each temperature studied, OMTKY3 association with alpha-chymotrypsin is entropy driven with a large, unfavorable enthalpy contribution. The observed entropy of the binding reflects interplay between two very large favorable and unfavorable terms. The favorable term reflects an increase in the hydrational entropy resulting from release to the bulk of 454 water molecules. The unfavorable term is related to a decrease in the configurational entropy and, consequently, a decrease in the conformational dynamics of the two proteins. In general, we discuss the relationship between macroscopic and microscopic properties, in particular, identifying and quantifying the role of hydration in determining the thermodynamics of protein recognition as reflected in volumetric and calorimetric parameters.  相似文献   

18.
Hydrolysis of gallotannin to gallic acid by immobilized mycelia of Aspergillus niger MTCC 282, Aspergillus fischerii MTCC 150, Fusarium solani MTCC 350 and Trichoderma viride MTCC 167 in a packed bed bioreactor was studied. Fungal mycelia preinduced with 5 g L-1 gallotannin were immobilized in calcium alginate gel (1.5%) and the resultant beads were packed in a column to a bed volume of 175 mm3. Gallotannin dissolved in distilled water was passed through the column and the eluate was recycled after adjusting pH to 6 with ammonium hydroxide (10%). Maximum hydrolysis of gallotannin was recorded by immobilized mycelia of F. solani and T. viride at 35 degrees and 45 degrees C after 175 and 60 min of residency period respectively. Optimum substrate concentration required for maximum hydrolysis was 10 g L-1 at pH 5 for both the fungi. Immobilized mycelia of A. niger and A. fischerii revealed maximum operational stability. Loss of activity after eighth run was in the order of-A. niger (no loss), A. fischerii (7.5%), F. solani (18%) and T. viride (18%). Stability in terms of retention of enzyme activity after 150 days of storage at 4 degrees C was A. niger (58%), A. fischerii (26.8%), F. solani (83%) and T. viride (85.1%).  相似文献   

19.
Dissolution of sucrose crystals in the anhydrous sorbitol melt   总被引:1,自引:0,他引:1  
The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degrees C) in anhydrous sorbitol (mp 99 degrees C) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degrees C. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degrees C, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures.  相似文献   

20.
The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号