首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch scale activated sludge kinetic studies were undertaken for the treatment of pet food wastewater characterized by oil and grease concentrations of up to 21,500 mg/L, COD and BOD concentrations of 75,000 and 60,000 mg/L, respectively as well as effluent from the batch dissolved air flotation (DAF) system. The conducted kinetics studies showed that Haldane Model fit the substrates and biomass data better than Monod model in DAF-pretreated wastewater, while the modified hydrolysis Monod model better fit the raw wastewater kinetic data. For the DAF pretreated batches, Haldane Model kinetic coefficients k, K(S), Y and Ki values of 1.28-5.35 g COD/g VSS-d, 17,833-23,477 mg/L, 0.13-0.41 mg VSS/mg COD and 48,168 mg/L, respectively were obtained reflecting the slow biodegradation rate. Modified hydrolysis Monod model kinetic constants for the raw wastewater i.e., k, K(S), Y, and K(H) varied from 1-1.3 g COD/g VSS-d, 5580-5600 mg COD/l, 0.08-0.85 mg VSS/mg COD, and 0.21-0.66 d(-1), respectively.  相似文献   

2.
Salt inhibition kinetics in nitrification of synthetic saline wastewater   总被引:3,自引:0,他引:3  
Nitrification kinetics of synthetic saline wastewater was investigated by using an activated sludge unit. Initial experiments were performed with salt-free wastewater to obtain baseline information. Experiments with 3% salt concentration were performed at different sludge ages in order to investigate the system performance and salt inhibition effects on kinetic constants. Minimum sludge age required for complete nitrification increased from 12 days for salt-free wastewater to 25 days for 3% salt content. Salt inhibition was non-competitive type affecting both the maximum rate and the saturation constants. Inhibition constants were determined by using the experimental data as K(T1) = 200 g/liter and K(T2) = 7.4 g/liter. Further experiments were performed with salt concentrations between 0-5% to quantify variation of the rate and extent of COD removal with salt concentration. The rate and extent of nitrification decreased approximately 20% with 5% salt as compared to salt-free wastewater.  相似文献   

3.
Nitrification and denitrification are important microbiological reactions of nitrogen. In this work, the kinetics of these reactions have been investigated based on a Monod-type expression involving two growth limiting substrates: ammonium nitrogen and dissolved oxygen for nitrification and nitrate nitrogen and dissolved organic carbon for denitrification. The kinetic constants and yield coefficients were evaluated for both these reactions. Past experimental work was used to determine the constants for the nitrification reaction. For the denitrification reaction, experiments were performed in a stirred tank reactor under conditions such that only one substrate was growth limiting. Steady-state values of the substrate concentrations in the reactor were determined at various dilution rates. These data were analyzed to obtain the kinetic and stoichiometric constants. From these constants it was concluded that in the range of nitrate nitrogen concentrations encountered in waste water, the denitrification reaction can be considered a first-order reaction. It was also found that three times as much organic carbon is required as nitrate nitrogen for complete nitrogen removal.  相似文献   

4.
The kinetics of bimolecular decay of alpha-tocopheroxyl free radicals (T) was studied by ESR mainly in ethanol and heptanol solvents. A second-order kinetic law was observed during the whole course of reaction (-d[T]/dt = 2k[T]2) and the following rate constants were determined with good accuracy in the temperature range 281-321 K: ethanol: log(2k) = 8.2 +/- 0.5--(6.6 +/- 0.7 kcal/mol)/(2.3RT) M-1.s-1; heptanol: log(2k) = 6.1 +/- 0.4--(4.3 +/- 0.6 kcal/mol)/(2.3RT) M-1.s-1. The global rate constant clearly increases with solvent polarity.  相似文献   

5.
Nitrification and denitrification of synthetic wastewater was studied by using two reactors in series. An activated sludge unit was used for nitrification followed by a downflow biofilter (packed column) for denitrification. A glucose solution was fed to the denitrification column to supply carbon source. Effects of important process variables such as sludge age, hydraulic residence time and feed ammonium concentration on system's performance were investigated. Effluent ammonium-nitrogen (NH4-N) concentration decreased with increasing sludge age and hydraulic residence time and remained constant for sludge age and hydraulic residence times greater than 12 d and 15 h, respectively. Feed ammonium-nitrogen concentration above 200 mg/l resulted in significant levels of NH4-N in the effluent at Šc = 15 d and ŠH = 12 h in nitrification. Performance of denitrification stage was not satisfactory for feed NO3-N concentrations above 150 mg N/l resulting in significant effluent NO3-N levels at hydraulic residence time of ŠH = 6 h.  相似文献   

6.
Moxley MA  Becker DF 《Biochemistry》2012,51(1):511-520
The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.  相似文献   

7.
Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine protease's chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.  相似文献   

8.
Transient kinetic data of ATP binding and cleavage by cardiac myosin subfragment 1 (S1) were obtained by fluorescence stopped flow and analyzed by using computer modeling based on a consecutive, reversible two-step mechanism: (formula: see text) where M1 and M12 denote myosin species with enhanced fluorescence and K'O = K0/(K0[ATP] + 1). The kinetic constants K0, k12, k23, and k32 and the fractional contributions of M1 and M12 to the total fluorescence are analyzed over a range of systematically varied solution parameters. The initial ATP binding equilibrium (K0), which decreases with increasing pH, is facilitated by a positively charged protein residue with a pK of 7.1. An active-site charge of +1.5 is determined from the ionic strength dependence. The rate constants k12, k23, and k32 also exhibit pK's near neutrality but increase with increasing pH. The majority of the large (-54 kJ/mol) negative free energy of ATP binding occurs upon S1 isomerization, k12, and a large increase in entropy (183 J/kmol at 15 degrees C) is associated with the cleavage step. The equilibrium constant for the cleavage step, K2, is determined as 3.5 at pH 7.0, 15 degrees C, and 200 mM ionic strength. There are no significant changes in fractional contributions to total fluorescence enhancement due to solvent-dependent conformational changes of S1 in these data. When values for the combined rate constants are calculated and compared with those determined by graphical analysis, it is observed that graphical analysis overestimates the binding rate constant (K0k12) by 25% and the hydrolysis rate constant (k23 + k32) by as much as 30%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.  相似文献   

10.
A simple and direct assay method for glucose oxidase (EC 1.1.3.4) from Aspergillus niger and Penicillium amagasakiense was investigated by Fourier transform infrared spectroscopy. This enzyme catalyzed the oxidation of d-glucose at carbon 1 into d-glucono-1,5-lactone and hydrogen peroxide in phosphate buffer in deuterium oxide ((2)H(2)O). The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation. The extinction coefficient epsilon of d-glucono-1,5-lactone was determined to be 1.28 mM(-1)cm(-1). The initial velocity is proportional to the enzyme concentration by using glucose oxidase from both A. niger and P. amagasakiense either as cell-free extracts or as purified enzyme preparations. The kinetic constants (V(max), K(m), k(cat), and k(cat)/K(m)) determined by Lineweaver-Burk plot were 433.78+/-59.87U mg(-1) protein, 10.07+/-1.75 mM, 1095.07+/-151.19s(-1), and 108.74 s(-1)mM(-1), respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on horseradish peroxidase in aqueous media: 470.36+/-42.83U mg(-1) protein, 6.47+/-0.85 mM, 1187.77+/-108.16s(-1), and 183.58 s(-1)mM(-1) for V(max), K(m), k(cat), and k(cat)/K(m), respectively. Therefore, this spectroscopic method is highly suited to assay for glucose oxidase activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of glucose oxidase activity.  相似文献   

11.
The mechanism of ajmaline-induced inhibition of the transient outward current (I(to)) has been investigated in right ventricular myocytes of rat using the whole cell patch clamp technique. Ajmaline decreased the amplitude and the time integral of I(to) in a concentration-dependent, but frequency- and use-independent manner. In contrast to the single exponential time course of I(to)-inactivation in control conditions (tau(i) = 37.1 +/- 2.7 ms), the apparent inactivation was fitted by a sum of two exponentials under the effect of ajmaline with concentration-dependent fast and slow components (tau(f) = 11.7 +/- 0.8 ms, tau(s) = 57.6 +/- 2.7 ms at 10 micromol/l) suggesting block development primarily in the open channel state. An improved expression enabling to calculate the association and dissociation rate constants from the concentration dependence of tau(f) and tau(s) was derived and resulted in k(on) = 4.57 x 10(6) +/- 0.32 x 10(6) mol(-1).l.s(-1) and k(off) = 20.12 +/- 5.99 s(-1). The value of K(d) = 4.4 micromol/l calculated as k(off) / k(on) was considerably lower than IC(50) = 25.9 +/- 2.9 micromol/l evaluated from the concentration dependence of the integrals of I(to). Simulations on a simple model combining Hodgkin-Huxley type gating kinetics and drug-channel interaction entirely in open channel state agreed well with the experimental data including the difference between the K(d) and IC(50). According to the model, the fraction of blocked channels increases upon depolarization and declines if depolarization is prolonged. The repolarizing step induces recovery from block with time constant of 52 ms. We conclude that in the rat right ventricular myocytes, ajmaline is an open channel blocker with fast recovery from the block at resting voltage.  相似文献   

12.
Reliable kinetic estimates can be obtained from significantly less data than is commonly used today, particularly in the characterization of 1:1 interactions involving low molecular weight compounds and proteins. We have designed a rational and cost-effective strategy to determine kinetic constants using Biacore's surface plasmon resonance-based biosensors and show that the number of measurements necessary for accurate kinetic determinations can be greatly reduced, increasing sample throughput and saving sample material. Simulated and measured data for a range of possible 1:1 interactants were studied to find the minimum requirements of a data set for kinetic analysis. The results showed that kinetic constants in the region 10(4) < k(a) < 10(7) M(-1) s(-1) (association) and 10(-4) < k(d) < 10(-1) s(-1) (dissociation) could easily be determined in a 1:1 interaction model. Owing to the information-dense nature of Biacore data, only two sample concentrations were necessary to reliably determine the kinetics. A standard sample concentration series consisting of 10-fold dilutions between approximately 10 microM and approximately 1 nM consistently provided at least two concentrations with sufficient information about the interaction in this region. Determinations of the constants became increasingly unreliable outside this region. If the rate constants prove to be outside the specified region or the data fits poorly to the 1:1-MTL model, more experiments are required. General recommendations for the design of a cost-effective assay to deliver reliable kinetic measurements are provided.  相似文献   

13.
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.  相似文献   

14.
Cheng MC  Marsh EN 《Biochemistry》2005,44(7):2686-2691
A key step in the mechanism of all adenosylcobalamin-dependent enzymes is the abstraction of a hydrogen atom from the substrate by a 5'-deoxyadenosyl radical generated by homolytic fission of the coenzyme cobalt-carbon bond. We have investigated the isotope effects associated with this process for glutamate mutase reacting with deuterated glutamate. The kinetics of deuterium incorporation into 5'-deoxyadenosine (5'-dA) during the reaction were followed by rapid chemical quench, using HPLC and electrospray mass spectrometry to analyze the 5'-dA formed. The kinetics of 5'-dA formation are biphasic, comprising a rapid phase k(app) = 37 +/- 3 s(-)(1) and a slower phase k(app) = 0.9 +/- 0.4 s(-)(1). The mass spectral data clearly show that the faster phase is associated with the formation of monodeuterated 5'-dA whereas the slower phase is associated with the incorporation of a second and then a third deuterium into 5'-dA. This observation implies that a large inverse equilibrium secondary isotope effect is associated with the formation of 5'-dA from adenosylcobalamin. The primary deuterium kinetic isotope effects on V and V/K for the formation of 5'-dA were determined from time-based and competition experiments. (D)V = 2.4 +/-0.4 whereas (D)(V/K) = 10 +/- 0.4, implying that an isotopically insensitive step is partially rate-determining. The additional data provided by these experiments cause us to revise our interpretation of earlier UV-visible stopped-flow kinetic measurements of AdoCbl homolysis obtained with deuterated substrates.  相似文献   

15.
Buckman J  Miller SM 《Biochemistry》2000,39(34):10521-10531
The transient kinetics of the reaction of the estrogen binding protein (EBP1) from Candida albicans in which hydride is transferred from NADPH to trans-2-hexenal (HXL) in two half-reactions were analyzed using UV-visible spectrophotometric and fluorometric stopped-flow techniques. The simplest model of the first half-reaction involves four steps including very rapid, tight binding (K(d) 相似文献   

16.
Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3alpha-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NADPH (reduction) and androsterone and NADP(+) (oxidation). Steady-state, transient state kinetics, and kinetic isotope effects reconciled the ordered bi-bi mechanism, which contained 9 enzyme forms and permitted the estimation of 16 kinetic constants. In both reactions, loose association of the NADP(H) was followed by two conformational changes, which increased cofactor affinity by >86-fold. For androstane-3,17-dione reduction, the release of NADP(+) controlled k(cat), whereas the chemical event also contributed to this term. k(cat) was insensitive to [(2)H]NADPH, whereas (D)k(cat)/K(m) and the (D)k(lim) (ratio of the maximum rates of single turnover) were 1.06 and 2.06, respectively. Under multiple turnover conditions partial burst kinetics were observed. For androsterone oxidation, the rate of NADPH release dominated k(cat), whereas the rates of the chemical event and the release of androstane-3,17-dione were 50-fold greater. Under multiple turnover conditions full burst kinetics were observed. Although the internal equilibrium constant favored oxidation, the overall K(eq) favored reduction. The kinetic Haldane and free energy diagram confirmed that K(eq) was governed by ligand binding terms that favored the reduction reactants. Thus, HSDs in the aldo-keto reductase superfamily thermodynamically favor ketosteroid reduction.  相似文献   

17.
AIMS: Enzyme kinetics of purified laccases from six different Pleurotus ostreatus strains were determined in the oxidation of syringaldazine, guaiacol and ABTS. METHODS AND RESULTS: Significant differences in the kinetic constants were found. Catalytic activity (kcat) ranged from 19 to 941 U mg(-1) for syringaldazine, from 18 to 1565 U mg(-1) for ABTS, and from 4 to 44 U mg(-1) for guaiacol. The apparent affinity constants (KM) also showed significant differences between the different strains, from 12 to 52 micromol l(-1) for syringaldazine, from 8 to 79 micromol l(-1) for ABTS, and from 0.46 to 6.61 mmol l(-1) for guaiacol. No differences were found either on the effect of increasing concentrations of organic solvent (acetonitrile) or on the activity pH profile. The temperature profile was the same for all the P. ostreatus strains, except for the IE8 strain, which seems to be more sensitive to temperature. The kinetic and stability data from the six P. ostreatus strains were also compared with those obtained from other white rot fungi, Coriolopsis gallica and Trametes versicolor, showing clear differences. CONCLUSION: The different P. ostreatus isolates showed different kinetic constants. SIGNIFICANCE AND IMPACT OF THE STUDY: The different enzymatic properties of laccases from various P. ostreatus strains should be considered for a potential industrial or environmental application.  相似文献   

18.
To explore the reliability of Biacore-based assays, 22 study participants measured the binding of prostate-specific antigen (PSA) to a monoclonal antibody (mAb). Each participant was provided with the same reagents and a detailed experimental protocol. The mAb was immobilized on the sensor chip at three different densities and a two-step assay was used to determine the kinetic and affinity parameters of the PSA/mAb complex. First, PSA was tested over a concentration range of 2.5-600 nM to obtain k(a) information. Second, to define the k(d) of this stable antigen/antibody complex accurately, the highest PSA concentration was retested with the dissociation phase of each binding cycle monitored for 1h. All participants collected data that could be analyzed to obtain kinetic parameters for the interaction. The association and the extended-dissociation data derived from the three antibody surfaces were globally fit using a simple 1:1 interaction model. The average k(a) and k(d) for the PSA/mAb interaction as calculated from the 22 analyses were (4.1+/-0.6) x 10(4) M(-1) s(-1) and (4.5+/-0.6) x 10(-5) s(-1), respectively. Overall, the experimental standard errors in the rate constants were only approximately 14%. Based on the kinetic rate constants, the affinity (K(D)) of the PSA/mAb interaction was 1.1+/-0.2 nM.  相似文献   

19.
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.  相似文献   

20.
Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号