首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found that alginate binds to glucoamylase, presumably through the recognition of starch binding domain of the latter. The present work exploits this for purification of glucoamylases from commercial preparation of Aspergillus niger and crude culture filtrate of Bacillus amyloliquefaciens by affinity precipitation technique in a single-step protocol. Glucoamylase is selectively precipitated using alginate as macroaffinity ligand and later eluted with 1.0 M maltose. In the case of A. niger, 81% activity is recovered with 28-fold purification. The purified glucoamylase gave a single band on SDS-PAGE corresponding to 78 kDa molecular weight. The developed affinity precipitation process also works efficiently for purification of Bacillus amyloliquefaciens glucoamylase from its crude culture filtrate, giving 78% recovery with 38-fold purification. The purified preparation showed a major band corresponding to 62 kDa and a faint band about 50 kDa on SDS-PAGE. The latter corresponds to the molecular weight for alpha-amylase of Bacillus amyloliquefaciens.  相似文献   

2.
Beta-glucosidase was purified from a crude cellulase preparation from Aspergillus niger by affinity chromatography on a methacrylamide-N-methylene-bis-methacrylamide copolymer bearing cellobiamine. The purified enzyme was a dimer with an isoelectric point of 4.0. The molecular mass of the enzyme was estimated to be 240 kDa by gel-permeation chromatography. The enzyme hydrolyzed specifically beta-glucosidic bonds and catalyzed transglucosylation of the beta-glucosyl group of cellobiose to yield 4-O-beta-gentiobiosylglucose in the presence of organic solvents or under neutral conditions.  相似文献   

3.
High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface.  相似文献   

4.
《Process Biochemistry》2004,39(5):565-570
Expanded bed purification of α-amylase and cellulase directly from unclarified fermentation broth was carried out on specially prepared composite affinity matrices. The concept used was incorporation of polymeric substrates/substrate analogue during cross-linking of cellulose to prepare rigid, porous, cross-linked composite affinity matrices for target enzymes. Of the several polymeric substrates/substrate-analogue used, alginic acid (AA) and microcrystalline cellulose (MCC) when used to prepare cross-linked composite matrices with cellulose, resulted in best affinity purification matrices for α-amylase and cellulase, respectively. These matrices were suitable for purification of the enzymes by batch, packed bed as well as expanded bed purification protocols. The optimized expanded bed protocol for α-amylase from Bacillus spp. B3 gave 51-fold purification on AA-CELBEADS with 69% recovery, whereas, cellulase from Bacillus spp. B21 was purified on MCC-CELBEADS to 18-fold purification with 97% recovery. The SDS-PAGE of both purified preparations showed single bands indicating significant purification on composite affinity adsorbents in a single step strategy.  相似文献   

5.
Aspergillus niger and Rhizopus sp. glucoamylases were purified on an affinity chromatography column from commercially available, impure enzyme preparations. Up to 2 mg of glucoamylase protein was bound without leakage to a 1-ml affinity gel column (0.7 X 2.5 cm) possessing a covalently linked acarbose ligand (1 mg acarbose/g wet gel), and the bound enzyme was specifically released by irrigation of the column with a solution of maltose. A complete cycle of purification was accomplished in about 8 h. Glucoamylases were recovered, in more than 80% yield, free of alpha-amylase activity and possessing specific activities comparable to those of preparations obtained by time-consuming, multistep procedures involving several ion-exchange and hydrophobic column fractionations. Thus, acarbose affinity chromatography provides a general method for the rapid and efficient purification of the glucoamylases, and seems to be ideally suited for scale-up for the commercial purification of these enzymes.  相似文献   

6.
Affinity precipitation with a smart polymer, Eudragit S-100 (a methyl methacrylate polymer), was exploited for simultaneous refolding and purification of xylanase. Affinity precipitation consisted of this reversibly soluble-insoluble polymer-binding xylanase selectively. The complex was precipitated by lowering the pH and xylanase was eluted off the polymer using 1 M NaCl. For refolding experiments, the commercial preparation of Aspergillus niger xylanase was denatured with 8 M urea. Addition of microwave irradiated Eudragit S-100 and affinity precipitation led to recovery of 96% enzyme activity by refolding. Simultaneously, the enzyme was purified 45 times. Thermally inactivated preparation, when subjected to similar steps, led to 95% recovery of enzyme activity with 42-fold purification. The strategy has the potential for recovering pure proteins in active forms from overexpressed proteins, which generally form inclusion bodies in E. coli.  相似文献   

7.
It is shown that eudragit S-100, a copolymer of methylacrylic acid and methylmethacrylate, undergoes three-phase partitioning. It was found that 95% eudragit S-100 could be recovered as the interfacial precipitate by using 30% (w/v) ammonium sulfate, 1:1 ratio of t-butanol to polymer solution at 40 degrees C. Three-phase partitioning of proteins uses simultaneous addition of ammonium sulfate and t-butanol to precipitate proteins in an interfacial layer separating the aqueous phase and organic solvent. Exploiting the affinity of xylanases towards eudragit S-100, it was possible to purify xylanase from Aspergillus niger; 60% recovery of activity with 95-fold purification could be obtained by this process. The purified enzyme showed A single band on SDS-PAGE. The technique shows promise to develop into a general method that could be termed "macroaffinity ligand-facilitated three-phase partitioning (MLFTPP).  相似文献   

8.
Zhang B  Wang DF  Fan Y  Zhang L  Luo Y 《Mycopathologia》2009,167(3):163-171
Trypsin inhibitors (TI) from wild-type soybean (Glycine soya) (WBTI) and domesticated soybean (Glycine max) (SBTI) were purified using prepared chitosan resin-trypsin as filler on the affinity chromatography column. The SBTI/WBTI purification fold by affinity chromatography was 718- and 279-fold, with the activity recovery of 62% and 59%, respectively. It was found that SBTI and WBTI exerted a strong inhibition of Aspergillus. flavus growth, with IC(50) of 1.6 and 1.0 mumol/l. This growth inhibition was possibly the result of the inhibition on alpha-amylase activity of A. flavus by both the SBTI and WBTI. This was further supported by the fact that in the presence of SBTI and WBTI at 9.0 and 6.0 mug/g (peanut) on peanuts inhibited the germination and growth of A. flavus. Accordingly, characterization of the mode of action of SBTI and WBTI could constitute a first step leading to resistance to A. flavus invasion.  相似文献   

9.
Two reversibly soluble-insoluble polymers (viz. Eudragit S-100 and alginate) were used as free macroaffinity bioligands in polyethylene glycol (PEG)/salt two-phase systems for separation of enzymes. Incorporation of Eudragit S-100 and alginate in the PEG phase led to considerable selectivity in separation of microbial xylanases and pullulanase, respectively. Xylanase from Aspergillus niger was recovered 93% with 56-fold purification, whereas the enzyme from Trichoderma reesei and Bacillus amyloliquefaciens was obtained with 93% activity recovery (31-fold purification) and 90% activity recovery (32-fold purification), respectively. From Bacillus acidopullulyticus pullulanase, 85% enzyme activity recovery with 44-fold purification was obtained. The approach described here shows the potential of developing into a general approach for use of reversibly soluble-insoluble macroaffinity ligand in two-phase affinity extraction.  相似文献   

10.
Starch-degrading enzymes glucoamylase (from Aspergillus niger), and pullulanase (from Bacillus acidopullulyticus) were purified using alginates (polysaccharides consisting of mannuronic acids and guluronic acids) by a recently developed technique called macroaffinity ligand-facilitated three-phase partitioning (MLFTPP). In this process, a crude preparation of the enzyme was mixed with alginate. On addition of appropriate amounts of ammonium sulfate and t-butanol, the alginate bound enzyme appeared as an interfacial precipitate between the lower aqueous and the upper t-butanol phase. Enzyme activity from this interfacial precipitate was recovered using 1M maltose. Glucoamylase and pullulanase were purified 20- and 38-fold with 83% and 89% activity recovery, respectively. Both the purified preparations showed a single band on SDS-PAGE.  相似文献   

11.
alpha-Amylase from various sources was found to bind alginate in free solution. The alginate-enzyme complex could be precipitated with Ca(2+). The enzyme activity could be recovered by dissolving the precipitate in 1 M maltose and precipitating alginate alone by addition of Ca(2+). Based upon these observations, alpha-amylase from wheat germ was purified with 68-fold purification and 72% recovery. The molecular weight estimated by SDS-PAGE was 18 kDa. The method also worked equally well with alpha-amylase for the whole wheat seed. The latter enzyme could be purified 54-fold with 70% activity recovery. The molecular weight of this second enzyme was estimated to be 45 kDa by SDS-PAGE.  相似文献   

12.
The ability of alpha-amylases from different sources to carry out reactions of alcoholysis was studied using methanol as substrate. It was found that while the enzymes from Aspergillus niger and Aspergillus oryzae, two well-studied saccharifying amylases, are capable of alcoholysis reactions, the classical bacterial liquefying alpha-amylases from Bacillus licheniformis and Bacillus stearothermophilus are not. The effect of starch and methanol concentration, temperature and pH on the synthesis of glucosides with alpha-amylase from A. niger was studied. Although methanol may inactivate alpha-amylase, a 90% substrate relative conversion can be obtained in 20% methanol at a high starch concentration (15% w/v) due to a stabilizing effect of starch on the enzyme. As the products of alcoholysis are a series of methyl-oligosaccharides, from methyl-glucoside to methyl-hexomaltoside, alcoholysis was indirectly quantified by high performance liquid chromatography analysis of the total methyl-glucoside produced after the addition of glucoamylase to the alpha-amylase reaction products. More alcoholysis was obtained from intact soluble starch than with maltodextrins or pre-hydrolyzed starch. The biotechnological implications of using starch as substrate for the production of alkyl-glucosides is analyzed in the context of these results.  相似文献   

13.
A fungus capable of using carbaryl as the sole source of carbon and energy was isolated from a soil enrichment, and characterized as Aspergillus niger and designated strain PY168. A novel carbaryl hydrolase from cell extract was purified 262-fold to apparent homogeneity with 13.6% overall recovery. It had a monomeric structure with a molecular mass of 50,000 Da and a pI of 4.6, and the enzyme activity was optimal at 45 degrees C and pH 7.5, The activities were strongly inhibited by Hg(2+), Ag+, rho-chloromercuribenzoate, iodoacetic acid, diisofluorophosphate and phenylmethylsulfonyl fluoride but not EDTA and phenanthroline. The purified enzyme hydrolyzed various N-methylcarbamate insecticides. Carbaryl is the preferred substrate.  相似文献   

14.
Maximum cellulase production was sought by comparing the activities of the cellulases produced by differentTrichoderma reesei strains andAspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than otherTrichoderma reesei strains andAspergillus niger that was isolated from soil. By optimizing the cultivation condition during shake flask culture, higher cellulase production could be achieved. The FP (filter paper) activity of 3.7 U/ml and CMCase (Carboxymethylcellulase) activity of 60 U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the Enzyme activities were 133.35 U/ml (CMCase) and 11.67 U./ml (FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9 U/g of CMCase activity and 166.7 U/g of FP activity with 83.5% CMCase recovery.  相似文献   

15.
Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) from Aspergillus niger was purified to be free from alpha-amylase and phosphatase (glucose 6-phosphate as substrate). The phosphatase was well separated from the glucoamylase by phosphocellulose ion-exchange chromatography. The glucoamylase action was prevented by the esterified phosphate groups of the substrate. Thus, the extensive action of the glucoamylase on potato starch exposed the 6-posphorylglucosyl residue of the starch at the non-reducing terminal and large molecular weight limit dextrins remained. The concomitant action of the phosphatase was necessary for the complete degradation of the starch.  相似文献   

16.
Glucose oxidase (GO) is an important industrial enzyme typically purified from Penicillium and Aspergillus sp. As GO distribution within the cultures influences process design for maximal product recovery, distribution of GO activity in Penicillium sp. CBS 120262 and Aspergillus niger NRRL-3, during mid-exponential and stationary phases, is compared. On progression from mid-exponential to stationary phase, the percentage GO activity in the cytoplasm decreased 1.6- and 1.3-fold in Penicillium sp. and A. niger respectively. In Penicillium sp., a concomitant 1.8- and 1.9-fold decrease in the percentage GO activity in the cell envelope and slime mucilage respectively, translated into a 2.0-fold increase in the extracellular fluid. In A. niger, decreasing cytoplasmic GO activity was accompanied by 1.3-fold increases in the cell envelope and slime mucilage, with a 1.3-fold decrease in the extracellular fluid. Similar trends were observed in specific GO activities. As final GO activity recovered is governed by the purification program, recovery from the extracellular fluid plus cell extract or from the extracellular fluid only were compared through simulating processes of varying complexity. A critical yield for each purification stage was identified above which recovery from the extracellular fluid plus cell extract exceeded that from extracellular fluid alone. These results highlight the influence of microorganism, harvest time and efficiency of downstream process on GO activity delivered. In the systems studied, Penicillium sp. is the organism of choice and should be harvested during stationary phase. The purification process chosen should be informed by both enzyme distribution and individual purification stages yields.  相似文献   

17.
The xynB gene, which encodes endo-beta-1,4-xylanase XynB, in Aspergillus niger BRFM281 was amplified by RT-PCR using mRNA isolated from a culture containing sugar beet pulp as an inducer. The cDNA was cloned into an expression cassette under the control of the strong and constitutive glyceraldhehyde-3-phosphate dehydrogenase gene promoter. The expression system was designed to produce the recombinant enzyme XynB with a six-histidine peptide fused to the carboxy end of the protein. Homologous overproduction of XynB was successfully achieved in shake flask cultures, and the secretion yield was estimated to be 900 mg x L(-1). The recombinant XynB was purified 1.5-fold by immobilized metal affinity chromatography to homogeneity using a one-step purification protocol with 71% recovery. The purified recombinant enzyme was fully characterized and has a molecular mass of 23 kDa and an optimal activity at pH 5.5 and 50 degrees C with stability in the pH range 4.0-7.0 and temperature up to 50 degrees C. Using soluble oat spelts xylan, the determined Km and Vmax values were 7.1 mg x mL(-1) and 3881 U x mg(-1), respectively.  相似文献   

18.
采用羧甲基纤维素钠筛选培养基,对黑曲霉(Aspergillus niger)T-DNA突变子文库进行筛选,分离到一株纤维素酶分泌水平较低的菌株AN-108,为野生型菌株的83.3%。进一步测定该突变子固体发酵的纤维素酶活力,与野生型菌株相比没有明显差别,推测与固体发酵培养基中含有的天然糖类有关。在添加不同糖类的CMC-Na平板上培养该突变子,菌落周围均出现较明显的水解圈,结果显示糖类可能作为诱导物克服突变带来的影响。为了确定突变子AN-108中何种基因被阻断,采用反向PCR方法分析了T-DNA插入位点的序列,获得序列经过比对分析发现,该序列与黑曲霉An14g03730同源程度达90%,编码富含脯氨酸蛋白(proline-rich protein,PRP)。  相似文献   

19.
Chitosan and its derivatives have been used as affinity matrices for purification of lipase from Aspergillus niger NCIM 1207. Trimellitic anhydride (TMA)-crosslinked deacetylated chitin adsorbed lipase selectively, yielding approximately 5-fold purification of the crude lipase with 70% yield. Further 9-fold purification occurred on eluting through Sephacryl-100. These results suggest that chitosan derivatives can be used as inexpensive biopolymer matrices for the purification of lipases for industrial applications.  相似文献   

20.
A phytase (EC 3.1.3.8) with a high affinity for phytic acid was found in Aspergillus niger SK-57 and purified to homogeneity in four steps by using ion-exchange chromatography (two types), gel filtration, and chromatofocusing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme gave a single stained band at a molecular mass of approximately 60 kDa. The Michaelis constant of the enzyme for phytic acid (18.7 +/- 4.6 microM) was statistically analyzed. In regard to the orthophosphate released from phytic acid, a significant difference between a low K(m) phytase from A. niger SK-57 and a high K(m) phytase from Aspergillus ficuum was recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号