首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The exact localization of an insertion in the genome of transgenic plants obtained by Agrobacterium-mediated transformation is an integral part of most experiments aimed at studying these types of mutants. There are several methods for isolating unknown nucleotide sequences of genomic DNA which flank the borders of T-DNA integrated in the genome of plants. However, all the methods based on PCR have limitations which in some cases do not permit the desired objective to be achieved. We have developed a new technique for isolating flanking sequence tags (FSTs) via modified inverse PCR. This method is highly efficient and simple, but also retains the advantages of previously well-documented approaches.  相似文献   

2.
3.
4.
5.
6.
A potential mechanism of light regulation of the succinate dehydrogenase (SDH) expression in Arabidopsis thaliana leaves was studied. As was shown by dot-hybridization and polymerase chain reaction in real time (RT-PCR), the SDH mRNA level in wild-type Arabidopsis thaliana plants changed depending on light conditions. The level of SDH mRNA in darkness was higher than in the light. The analysis of Arabidopsis thaliana plants carrying the mutant genes of phytochromes A and B showed that phytochrome A was involved in the regulation of the SDH enzyme activity. The active form of phytochrome A suppressed the SDHI-2 gene expression, and that resulted in decreasing activity of SDH.  相似文献   

7.
Arabidopsis thaliana is one os the most studied plant model systems. Completing the genomic sequence ofA. thaliana has provided new opportunities for physiological and biochemical studies. While its small size is advantageous for genetic studies, the plant's low biomass makes it difficult to obtain enough plant material for biochemical and physiological research. The small size and rosette leaf structure, combined with the sensitivity of the apical meristem to flooding, make hydroponic growth of this model plant difficult. A few systems for hydroponic culture ofArabidopsis have been described. Gibeaut et al. (1997) introduced the use of rockwool forArabidopsis hydroponic culture. We have improved this system by introducing small-volume plastic containers with improved plugs to support the rockwool. This method is simpler than the original setup and provides improved germination and growth. The smaller containers enable the use of this system in growth chambers or small growth rooms for a large number of parallel experiments.  相似文献   

8.
Atrazine belongs to the widely used herbicides blocking the electron transport chain in chloroplasts, thus resulting in the generation of active oxygen species. In the present work, we demonstrated that, at low concentrations mimicking residual amounts, atrazine enhanced the susceptibility of Arabidopsis plants to further treatments with the same herbicide applied at the recommended field rate. Arabidopsis thaliana plants were treated three times (at five-day intervals) with 1 µM atrazine. Five days after the last treatment, the plants were sprayed with 5 mM atrazine. Atrazine increased the levels of lipid peroxidation products, hydrogen peroxide, and ion leakage, and caused changes in the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, and catalase.From Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 243–249.Original English Text Copyright © 2005 by Ivanov, Alexieva, Karanov.This article was submitted by the authors in English.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

9.
Changes in plant growth, membrane integrity, ethylene evolution, ABA content, and the content of free polyamines were examined in 14-day-old Arabidopsis thaliana (L.) Heynh., strain Columbia (Col-0) plants after a single UV-B irradiation with low (3 kJ/m2), moderate (6–9 kJ/m2), high (18 kJ/m2), and lethal (27 kJ/m2) doses. The UV-B treatment caused dose-dependent suppression of plant growth. One hour after irradiation, the membrane damage was evident from the increased leakage of electrolytes. The low-dose and moderate-dose irradiation caused a transient increase in evolution of ethylene and in the content of putrescine (spermidine and spermine precursor) with the peaks of these parameters attained at 5 and 24 h, respectively. The high-and lethaldose irradiation induced a smaller rise in ethylene evolution, with a slight trend to its decrease, especially, after the exposure to the lethal dose. The high and lethal doses of UV-B suppressed putrescine accumulation, depleted spermidine and spermine pools, and caused severe injuries and plant death. During the first day after irradiation, the ABA content increased in proportion to the irradiation dose. On the second day, the accumulation of ABA was observed in plants irradiated with moderate doses. The accumulation was arrested after a high-dose irradiation and was diminished by 45% after a lethal dose treatment. The results provide evidence for the involvement of ethylene, ABA, and polyamines in plant responses induced by UV-B irradiation.  相似文献   

10.
A meiotic time-course for Arabidopsis pollen mother cells has been established based on BrdU pulse-labelling of nuclear DNA in the meiotic S-phase. Labelled flower buds were sampled at intervals and the progress of labelled cells through meiosis assessed by anti-BrdU antibody detection. The overall duration of meiosis from the end of meiotic S-phase to the tetrad stage, at 18.5°C, was 33 h, which is about three times longer than the mitotic cell cycle in seedlings. The onset of leptotene was defined by reference to the loading of the axis-associated protein Asy1, and this permitted the detection of a definite G2 stage, having a maximum duration of 9 h. It is likely, from two independent sources of evidence, that the meiotic S-phase has a duration similar to that of G2. The durations of leptotene and zygotene/pachytene are 6 h and 15.3 h, respectively, but the remaining meiotic division stages are completed very rapidly, within 3 h. The establishment of a meiotic time-course provides a framework for determining the relative timing and durations of key molecular events of meiosis in Arabidopsis in relation to cytologically defined landmarks. In addition, it will be important in a broader developmental context for determining the timing of epigenetic mechanisms that are known or suspected to occur during meiosis.  相似文献   

11.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

12.
Simple method of Arabidopsis thaliana w.t. cv. Columbia (L.) Heynh. cultivation in liquid nutrient medium is presented. After 5 weeks of growth in soil, the plants were transferred to modified Hoagland nutrient medium. This allowed us to cultivate Arabidopsis in conditions comparable to all other hydroponically grown higher plants used in plant physiology and plant stress physiology experiments. Absence of agar in growth medium and free access to whole root system makes this method useful also in experiments concerning root physiology.  相似文献   

13.
In this study, we examined the influence of UV-B radiation (280–320 nm) on ABA accumulation in 14-day-old Arabidopsis thaliana (L.) Heynh plants of wild type (WT), ethylene receptor mutant (etr1-1), and mutant with a constitutively active ethylene signal transduction pathway (ctr1-1). ABA content in nonirradiated WT plants was twice higher than in each mutant. UV-B irradiation caused dose-dependent ABA accumulation in WT plants. In the etr1-1 mutant, the amount of accumulated ABA was significantly less. In the ctr1-1 mutant, ABA content didn’t increase after UV-B irradiation. These data suggest that start of stress-induced ABA formation requires the adjustable ethylene signal pathway. In the ctr1-1 mutant, a constitutively active (nonadjustable) ethylene signal pathway blocks stress-induced ABA accumulation.  相似文献   

14.
15.
Low doses of microtubule-interacting drugs cause wild-type Arabidopsis thaliana seedling roots to twist in a left-handed helical direction. We here report molecular characterization of an A. thaliana tubulin mutant whose roots twist in a right-handed direction and have shallow left-handed cortical microtubule arrays when challenged with low doses of microtubule drugs. In the absence of the drug, growth and development of the mutant was apparently normal. In this conditional twisting mutant, Cys213 of α-tubulin6 was exchanged with Tyr. The mutant tubulin was incorporated into the microtubule polymer with wild-type tubulins, and thus acted as a dominant-negative mutation. These results suggest that compromised microtubules in wild-type and mutant roots are qualitatively distinct and affect skewing direction differently.  相似文献   

16.
The ability of the CRE recombinase to catalyze excision of a DNA fragment flanked by directly repeated lox sites has been exploited to modify gene expression and proved to function well in particular case studies. However, very often variability in CRE expression and differences in efficiency of CRE-mediated recombination are observed. Here, various approaches were investigated to reproducibly obtain optimal CRE activity. CRE recombination was analyzed either by transforming the CRE T-DNA into plants containing a lox-flanked fragment or by transforming a T-DNA harboring a lox-flanked fragment into plants producing the CRE recombinase. Although somatic CRE-mediated excision of a lox-flanked fragment was obtained in all transformants, a variable amount of germline-transmitted deletions was found among different independent transformants, irrespective of the orientation of transformation. Also, the efficiency of CRE-mediated excision correlated well with the CRE mRNA level. In addition, CRE-mediated fragment excision was compared after floral dip and after root tissue transformation when transforming in a CRE-expressing background. Importantly, less CRE activity was needed to excise the lox-flanked fragment from the transferred T-DNA after root tissue transformation than after floral dip transformation. We hypothesize that this is correlated with the lower T-DNA copy number inserted during root transformation as compared to floral dip transformation. Gordana Marjanac and Annelies De Paepe contributed equally to this work.  相似文献   

17.
Three AtHSP90 isoforms, cytosol-localized AtHSP90.2, chloroplast-localized AtHSP90.5, and endoplasmic reticulum (ER)-localized AtHSP90.7 genes, were constitutively overexpressed in Arabidopsis thaliana to study their functional mechanisms under oxidative stress. Overexpression of AtHSP90 genes reduced germination of transgenic seeds under oxidative stress. When exposed to 10 mM H2O2, AtHSP90 transgenic seedlings displayed lower activities of superoxide dismutase, catalase, and peroxidase; higher content of malondialdehyde; and higher levels of protein damage than detected in the wild type. This indicated that overexpression of AtHSP90.2, AtHSP90.5, and AtHSP90.7 in Arabidopsis impaired plant tolerance to oxidative stress. Moreover, overexpression of chloroplast- and ER-localized AtHSP90 resulted in lower resistance to oxidative stress than that of cytosolic AtHSP90. This suggested that HSP90.2, HSP90.5, and HSP90.7 localized in different cellular compartments were involved in different functional mechanisms during oxidative stress.  相似文献   

18.
Carboxylesterases hydrolyze esters of short-chain fatty acids and have roles in animals ranging from signal transduction to xenobiotic detoxification. In plants, however, little is known of their roles. We have systematically mined the genome from the model plant Arabidopsis thaliana for carboxylesterase genes and studied their distribution in the genome and expression profile across a range of tissues. Twenty carboxylesterase genes (AtCXE) were identified. The AtCXE family shares conserved sequence motifs and secondary structure characteristics with carboxylesterases and other members of the larger / hydrolase fold superfamily of enzymes. Phylogenetic analysis of the AtCXE genes together with other plant carboxylesterases distinguishes seven distinct clades, with an Arabidopsis thaliana gene represented in six of the seven clades. The AtCXE genes are widely distributed across the genome (present in four of five chromosomes), with the exception of three clusters of tandemly duplicated genes. Of the interchromosomal duplication events, two have been mediated through newly identified partial chromosomal duplication events that also include other genes surrounding the AtCXE loci. Eighteen of the 20 AtCXE genes are expressed over a broad range of tissues, while the remaining 2 (unrelated) genes are expressed only in the flowers and siliques. Finally, hypotheses for the functional roles of the AtCXE family members are presented based on the phylogenetic relationships with other plant carboxylesterases of known function, their expression profile, and knowledge of likely esterase substrates found in plants.  相似文献   

19.
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号