首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Regulation of adrenomedullin secretion from cultured cells.   总被引:6,自引:0,他引:6  
Y Tomoda  Y Isumi  T Katafuchi  N Minamino 《Peptides》2001,22(11):1783-1794
Characterization of immunoreactive adrenomedullin (AM) secreted from cultured human vascular smooth muscle cells and 7 other cells indicates that AM is synthesized and secreted from all cultured cells we surveyed. The secretion rate of AM measured ranges from 0.001-6.83 fmol/10(5) cells/h, and endothelial cells, vascular smooth muscle cells and fibroblasts generally secrete AM at high rates. Based on the results of regulation of AM secretion from vascular wall cells, fibroblasts, macrophages and other cells measured in this and previous studies, AM secretion is found to be generally stimulated by inflammatory cytokines, lipopolysaccharide (LPS) and hormones. Especially, vascular smooth muscle cells and fibroblasts elicited uniform and strong stimulatory responses of AM secretion to tumor necrosis factor (TNF), interleukin-1 (IL-1), LPS and glucocorticoid, but endothelial cells did not elicit such prominent responses. AM secretion of monocyte-macrophage was mainly regulated by the degree of differentiation into macrophage and activation by LPS and inflammatory cytokines including interferon-gamma. The other examined cells showed weaker responses to LPS and IL-1. Although cultured cells may have been transformed as compared with those in the tissue, these data indicate that AM is widely synthesized and secreted from most of the cells in the body and functions as a local factor regulating inflammation and related reactions in addition to as a potent vasodilator. The responses of AM secretion to LPS and inflammatory cytokines suggest that fibroblasts, vascular smooth muscle cells and macrophage are the major sources of AM in the septic shock.  相似文献   

4.
The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells.  相似文献   

5.
The nerve growth factor (NGF) synthesis/secretion by cultured mouse astroglial cells was modulated by catecholamine. In quiescent cells, epinephrine (EN) and dopamine (DA) markedly increased the NGF content in the conditioned medium (CM). Conversely, EN, DA, and norepinephrine (NE) decreased the NGF content in growing cells. Cholinergic agonists, metacholine and carbamylcholine, slightly increased the NGF content in quiescent cells, but showed no effects on growing cells. Other neurotransmitters tested had no effects on either growing or quiescent cells. These results suggest that catecholamine is one of the molecules responsible for regulation of NGF synthesis/secretion in the mouse brain.  相似文献   

6.
Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment.  相似文献   

7.
8.
9.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

10.
11.
New orexigenic peptides called orexin-A and -B have recently been described in neurons of the lateral hypothalamus and perifornical area. No orexins have been found in adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin-receptor 2 (OX2R) in the rat adrenal gland has been reported. To test the effects of orexins on peripheral organs, we investigated their effects on catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. Orexin-A and -B (100 nM) significantly reduced basal and PACAP-induced tyrosine hydroxylase (TH) (the rate-limiting enzyme in the biosynthesis of catecholamines) mRNA levels. Orexin-A and -B (100 nM) also significantly inhibited the PACAP-induced increase in the cAMP level, suggesting that the suppressive effect on TH mRNA is mediated, at least in part, by the cAMP/protein kinase A pathway. Furthermore, orexin-A and -B (100 nM) significantly suppressed basal and PACAP-induced dopamine secretion from PC12 cells. Next, we examined whether orexin receptors (OX1R, OX2R) were present in the rat adrenal gland and PC12 cells. In the adrenal glands, OX2R was as strongly expressed as in the hypothalamus, but OX1R was not detected. On the other hand, neither OX1R nor OX2R was expressed in PC12 cells. However, binding assays showed equal binding of orexin-A and -B to PC12 cells, suggesting the existence in these cells of some receptors for orexins. These results indicate that orexins suppress catecholamine release and synthesis, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway.  相似文献   

12.
Summary To characterize the biological functions of cultured hamster tracheal cells, a microassay has been developed utilizing [3H]N-acetyl-d-galactosamine and [14C] serine as a double label for glycoprotein synthesis. After a 24-hr incubation of cell monolayers with these radioactive precursors, the cell culture supernatant was precipitated with trichloroacetic acid and electrophoresed on polyacrylamide gels. A single radioactive peak was detected containing both radioisotopes with a migration corresponding to a molecular weight of approximately 18,500 daltons. Under similar culture conditions, tracheal explants produced a nearly identical gel profile; in contrast, three established cell lines lacked most of this biosynthetic capability. Collagenase and hyaluronidase did not degrade the secreted macromolecule, and its sensitivity to weak alkali treatment revealed that it is a glycoprotein withO-glycosidic linkages. Vitamin A significantly enhanced its secretion, directly correlating with previous in vivo studies demonstrating a vitamin A prerequisite for normal mucus-secreting epithelium. Histochemical staining indicated the presence of acidic mucins within secretory packets on the cell. We have therefore concluded that this epithelial cell cultured from the hamster trachea has the specialized capacity for mucus secretion, and it may serve as a versatile model system for studying the synthesis and nature of mucus glycoproteins. This research was supported by Public Health Service Grant P50-HL 19171 and Research Career Development Award 1-K04-AI 00178 to J. B. B.  相似文献   

13.
Phosphatase activity in cultured tobacco cells XD-6 increasedremarkably under phosphate-deficient culture conditions. Suchan increase did not occur in the activities of -amylase, ß-galactosidase,succinate dehydrogenase and catalase under the same cultureconditions. By replenishment with Pi, the increase in totalphosphatase activity was suppressed and the specific activitywas reduced to a low level. The suppression of increase in theactivity resulted form a repression of de novo synthesis ofthe enzyme. Added Pi also suppressed the release of phosphataseinto the culture medium. The effect of Pi was found to be greaterthan the effect on the increase in the intracellular activity. At least three phosphatases were extracted from XD-6 cells.One of the enzymes increased when the phosphatase synthesiswas increased by phosphate deficiency. 1 Present address: Laboratory of Applied Microbiology, Facultyof Agriculture, Yamagata University, Tsuruoka, Yamagata 997,Japan. (Received May 18, 1977; )  相似文献   

14.
Significant differences in the glucocorticoid- and cyclic nucleotide-mediated regulation of the secretory glycoproteins, α-fetoprotein and transferrin, have been observed to develop in a mouse hepatoma cell line, Hepa-2, after many passages in culture. Treatment of low-passage cells with hydrocortisone (10?6m), N6,O2-dibutyryl cyclic AMP (10?3m), or 8-bromo-cyclic AMP (10?3m) results in 1.5-, 2- to 4-, and 5.5- to 6-fold increases, respectively, in the rates of synthesis and secretion of α-fetoprotein. As expected of secretory proteins, the ratio of synthesis to secretion is 1 and remains unaltered when treatment with hydrocoritsone, N6,O2-dibutyryl cyclic AMP, and 8-bromo-cyclic AMP causes a stimulation of synthesis and secretion. Similar studies showing that albumin and transferrin synthesis and secretion are also balanced in these low-passage cells have been published and indicate that the regulation of synthesis and secretion remains coupled in these low-passage cells. In high-passage Hepa-2 cells, however, we have shown that the relative rate of α-fetoprotein synthesis is higher than its rate of secretion and that the ratio of synthesis to secretion is 4. Similarly, the ratio of transferrin synthesis to secretion is 3.6, whereas it remains unaltered for albumin. When the high-passage cells are treated with N6,O2-dibutyryl cyclic AMP, there is a greater increase in the rate of secretion for both glycoproteins, resulting in a reduction of the ratio of synthesis to secretion from 4 to 1.63 for α-fetoprotein and from 3.6 to 2.3 for transferrin. This effect on the secretion of α-fetoprotein and transferrin is specific for the cyclic nucleotides and occurs only in high-passage cells. Hydrocortisone treatment causes an increase in α-fetoprotein synthesis and secretion. However, the ratio of synthesis to secretion increases from 3.96 in control to 5.5 in treated cells. Our studies show, therefore, that there is an increase in this ratio because of a slightly greater effect on synthesis which is not reflected in secretion. Similarly, hydrocortisone exerts a greater increase in transferrin synthesis than secretion and causes the ratio of synthesis to secretion to increase from 3.6 to 6.2. We propose that during continued subculturing a Hepa-2 variant is selected in which the regulation of serum glycoprotein synthesis and secretion is uncoupled. Furthermore, this effect is specific for secretory glycoproteins since the regulation of albumin synthesis and secretion by hydrocortisone and cyclic nucleotides remained unaltered.  相似文献   

15.
Summary We previously demonstrated that human tracheobronchial epithelial (TBE) cells synthesize mucin and form mucous granules in culture when they are maintained on a collagen gel (CG) substratum, but not on a plastic tissue culture surface or a thin collagen-coated surface (Wu et al., Am. J. Respir. Cell Mol. Biol., 3:467–478; 1990). This observation led us to examine the effects of CG thickness on cell growth and differentiation in primary human/monkey TBE cell cultures. Using the same CG preparation, culture dishes with different thicknesses of CG substratum were prepared. In general, equivalent degrees of cell attachment and proliferation were observed in all cultures maintained on a collagen gel, independent of the thicknesses of CG substratum. However, a greater degree of mucin synthesis and secretion by the cells was observed as the thickness of the CG substratum was increased. Cultures maintained on a thick collagen gel (1 mm) exhibited greater apical membrane complexity, more pseudostratification, and more mucous granules than did cultures maintained on a thin CG substratum. The optimal culture surface for airway mucous cell differentiation contains more than 1-mm thickness of collagen gel substratum.  相似文献   

16.
Many successful solid-phase syntheses of peptide chains in the region of 20–40 amino acid residues have now been routinely reported. Utilizing standard solid-phase synthetic methodologies but, particularly, new and powerful purification techniques we have been developing rapid and efficient preparative routes for the numerous neuro-gastrointestinal peptides. In the present study, secretin and motilin were obtained in 16% and 10% yields, respectively, after simplified two-step purification of hydrogen fluoride-cleaved peptides by gel filtration followed by preparative high performance liquid chromatography. Peptides were essentially homogeneous by TLC and analytical high performance liquid chromatography. Secretin was found to have full biological activity when tested against a standard sample of natural material for effects on pancreatic secretion in the dog. Motilin exhibited full biological activity on interdigestive motility in the dog. Secretin has been reported to undergo rearrangement with loss of bioactivity during purification and prolonged storage. We observed no obvious problems during our abbreviated purification schedule and have found no loss of purity of peptide which has been kept for 6 months as powder lyophilized from dilute acetic acid.  相似文献   

17.
Taste cells of the gut and gastrointestinal chemosensation   总被引:1,自引:0,他引:1  
  相似文献   

18.
Histamine stimulates the production of prostacyclin (PGI2) in cultured human endothelial cells. We have examined the cell specificity of histamine-mediated PGI2 synthesis in primary and subcultured human cells. Venous and arterial smooth muscle cells and skin fibroblasts synthesized PGI2 from exogenous arachidonic acid, but they did not synthesize a significant amount of PGI2 when treated with histamine. Endothelial cells, however, produced similar amounts of PGI2 in response to histamine and arachidonic acid. Thrombin also stimulates PGI2 production in endothelial cells. Histamine and thrombin yielded an additive production of PGI2 when added simultaneously to endothelial cells. When histamine and thrombin were added sequentially, the amount of PGI2 produced was not additive but equaled the amount characteristic of the first agonist alone. Following an initial treatment with histamine, endothelial cells were unable to respond to histamine for 3 hr, after which the PGI2 biosynthetic response rapidly returned to normal by 412 hr. When the initial histamine treatment was carried out under mildly alkaline conditions, the complete return of activity was delayed to 8 hr after treatment. The synthesis of PGI2 from exogenous arachidonic acid was unaffected by prior treatment with histamine. Recovery of histamine-mediated PGI2 production was not dependent on protein synthesis but required a component of fetal calf serum that is nondialyzable and moderately heat stable. Thus endothelial cell PGI2 synthesis in response to a physiologic agonist is subject to several levels of regulation, reflecting not only intracellular events but also the extracellular environment.  相似文献   

19.
A permanent cell line, designated Hepa, has been isolated from a mouse hepatoma, BW 7756. The cell line synthesizes and secretes albumin at rates appreciably higher than previously reported hepatomas adapted to in vitro conditions. Monospecific antimouse serum albumin was produced in rabbits, and mouse serum albumin secreted by the hepatoma cells was identified by double diffusion, immunoelectrophoresis, and radioimmunodiffusion. A quantitative immunoassay was used to measure albumin secretion and to study the effects of culture conditions on albumin secretion. A subclonal analysis was performed to study the homogeneity and stability of cloned hepatoma lines in respect to albumin secretion. Different secretion rates were observed during the culture cycle. Significant clonal variation in respect to albumin secretion was found among ten subclones.The significance of clonal variation is discussed in relation to the study of epigenetic control of albumin expression in somatic hybrid cells.  相似文献   

20.
The purpose of the present experiments was to examine the short- and long-term effects of estradiol-17 beta (E2), progesterone (P), and 5 alpha-dihydrotestosterone (DHT), alone and in combination, on the gonadotrophin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion, using an ovariectomized rat pituitary cells culture model. After 72 h in steroid-free medium, pituitary cells were further cultured for 24 h in medium with or without E2 (1 nM), P (100 nM), or DHT (10 nM). Cultures were then incubated for 5 h in the absence or presence of 1 nM GnRH with or without steroids. LH was measured in the medium and cell extract by radioimmunoassay. The results show that the steroid hormones exert opposite effects on the release of LH induced by GnRH, which seems to be dependent upon the length of time the pituitary cells have been exposed to the steroids. In fact, short-term (5 h) action of E2 resulted in a partial inhibition (64% of control) of LH release in response to GnRH, while long-term (24 h) exposure enhanced (158%) GnRH-induced LH release. Similar results were obtained with DHT, although the magnitude of the effect was lower than with E2. Conversely, P caused an acute stimulatory action (118%) on the LH released in response to GnRH and a slightly inhibitory effect (90%) after chronic treatment. GnRH-stimulated LH biosynthesis was also influenced by steroid treatment. Significant increases in total (cells plus medium) LH were observed in pituitary cells treated with E2 or DHT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号