首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coarse-grained molecular dynamics simulation has been performed to study the aggregated morphology of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), adsorbed on nanoscale graphene surfaces. The CTAB surfactants can self-assemble on graphene to form various supramolecular morphologies and structures. The effect of packing density, thickness of graphene sheet and width of graphene nanoribbon on the CTAB–graphene self-assembly has been investigated. The buoyant densities of various graphene–CTAB assemblies were calculated, which increase with surfactant coverage and number of graphene layers. This result demonstrates that density gradient can be used to isolate graphenes with various layers. This simulation provides larger-scale microscopic insight into the supramolecular self-assembly nanostructures for the CTAB surfactants aggregated on graphene, which could be valuable to guide fabrication of graphene-based hybrid nanocomposites.  相似文献   

2.
A simple Brownian model for the collective dynamics of a fluid confined by rigid walls is described for which the collective velocity autocorrelation function (CVACF) decays exponentially. Using this approach, a new method of calculating the Maxwell velocity slip coefficients from the collective diffusion coefficient, obtained from equilibrium molecular dynamics, is proposed. A comparison of the slip coefficients for a range of fluid densities with the results obtained from the tangential velocity loss of the colliding particles in non-equilibrium simulations show excellent agreement.  相似文献   

3.
1. Autorotation of a single-winged samara is a highly nonlinear phenomenon that represents a delicate equilibrium between gravity, inertia and aerodynamic effects. Therefore, in order to analyse this phenomenon, an accurate detailed model is necessary. Such a model has not been presented in the past. Recently the authors derived a detailed model which is briefly described in the paper. 2. The aerodynamic contributions present the most complicated part of the phenomenon. These contributions are treated using the blade-element/momentuin method, with certain improvements and additions. These improvements are necessary due to inherent differences between samara wings and other rotary wing systems (aircraft propellers, helicopter rotors, etc.). 3. The cross-sectional aerodynamics of the samara is characterized by relatively small Reynolds numbers, high angles of attack and rough surfaces. While these characteristics are different from other rotary wings, they are typical of the wing cross-sections of insects and birds. Therefore the lift and drag coefficients, which are necessary for the analysis, are obtained using available data for insect and bird wings. 4. The results of the theoretical model are compared with experimental results of tlvo kinds. The first kind includes results for a samara of an Acer platanoides that were reported in the literature. In addition, a special experimental model of a samiira was built and tested. This model offers a simple way of varying the configuration in order to study (experimentally) the effect of different geometric parameters on the autorotation. 5. In the light of the uncertainty in the aerodynamic coefficients, it can be concluded that there is quite a good agreement between the theoretical and experimental results. Thus, after LTalidation, the theoretical model is used for a parametric study to find the influence of different parameters on the autorotation. The important results of this study are outlined below. 6. The spanwise flolv component and the tangential component of the induced velocity have a very small influence and thus can be neglected. 7. It is important to include in the analysis the effects of the axial induced velocity, the tip effect, and the drag of the root region. 8. Since chordwise variations of the centre of pressure location, as a function of the angle of attack, were seen in the past (based on over simplified analyses) as the mechanism which is responsible for the samara stability, this effect is also added to the model. While the influence of this effect on the pitch angle is large and small on the sinking rate, it results in an increase in the deviation between the theoretical and experimental results. 9. Autorotation is sensitive to the cross-sectional aerodynamic coefficients. This sensitivity is critical since the available data on these coefficients is, to say the least, unsatisfactory and require significant improvement.  相似文献   

4.
A technique to determine friction at the fingertips   总被引:2,自引:0,他引:2  
This article proposes a technique to calculate the coefficient of friction for the fingertip- object interface. Twelve subjects (6 males and 6 females) participated in two experiments. During the first experiment (the imposed displacement method), a 3-D force sensor was moved horizontally while the subjects applied a specified normal force (4 N, 8 N, 12 N) on the surface of a sensor covered with different materials (sandpaper, cotton, rayon, polyester, and silk).The normal force and the tangential force (i.e., the force due to the sensor motion) were recorded. The coefficient of friction (mu(d)) was calculated as the ratio between the tangential force and the normal force. In the second experiment (the beginning slip method), a small instrumented object was gripped between the index finger and the thumb, held stationary in the air, and then allowed to drop. The weight (200 g, 500 g, and 1,000 g) and the surface (sandpaper, cotton, rayon, polyester, and silk) in contact with the digits varied across trials. The same sensor as in the first experiment was used to record the normal force (in a horizontal direction) and the tangential force (in the vertical direction). The slip force (i.e., the minimal normal force or grip force necessary to prevent slipping) was estimated as the force at the moment when the object just began to slip. The coefficient of friction was calculated as the ratio between the tangential force and the slip force. The results show that (1) the imposed displacement method is reliable; (2) except sandpaper, for all other materials the coefficient of friction did not depend on the normal force; (3) the skin-sandpaper coefficient of friction was the highest mu(d) =0.96+/-0.09 (for 4-N normal force) and the skin-rayon rayon coefficient of friction was the smallest mu(d) =0.36+/-0.10; (4) no significant difference between the coefficients of friction determined with the imposed displacement method and the beginning slip method was observed. We view the imposed displacement technique as having an advantage as compared with the beginning slip method, which is more cumbersome (e.g., dropped object should be protected from impacts) and prone to subjective errors owing to the uncertainty in determining the instance of the slip initiation (i.e., impeding sliding).  相似文献   

5.
Portable electronic devices have become increasingly widespread. Because these devices cannot always be tethered to a central grid, powering them will require low‐cost energy harvesting technologies. As a response to this anticipated demand, this study demonstrates transparent organic solar cells fabricated on flexible substrates, including plastic and paper, using graphene as both the anode and cathode. Optical transmittance of up to 69% at 550 nm is achieved by combining the highly transparent graphene electrodes with organic polymers that primarily absorb in the near‐IR and near‐UV regimes. To address the challenge of transferring graphene onto organic layers as the top electrode, this study develops a room temperature dry‐transfer technique using ethylene‐vinyl‐acetate as an adhesion‐promoting interlayer. The power conversion efficiency achieved for flexible devices with graphene anode and cathode devices is 2.8%–3.8% at for optical transmittance of 54%–61% across the visible regime. These results demonstrate the versatility of graphene in optoelectronic applications and it is important step toward developing a practical power source for distributed wireless electrical systems.  相似文献   

6.
Reactive gas uptake is predicted and compared in a single bifurcation at steady expiratory flow in terms of Sherwood number using an axisymmetric single-path model (ASPM) and a three-dimensional computational fluid dynamics model (CFDM). ASPM is validated in a two-generation geometry by comparing the average gas-phase mass transfer coefficients with the experimental values. ASPM predicted mass transfer coefficients within 20% of the experimental values. The flow and concentration variables in the ASPM were solved using Galerkin finite element method and in the CFDM using commercial finite element software FIDAP. The simulations were performed for reactive gas flowing at Reynolds numbers ranging from 60 to 350 in both symmetric bifurcation for three bifurcation angles, 30 deg, 70 deg, and 90 deg, and in an asymmetric bifurcation. The numerical models compared with each other qualitatively but quantitatively they were within 0.4-8% due to nonfully developed flow in the parent branch predicted by the CFDM. The radially averaged concentration variation along the axial location matched qualitatively between the CFDM and ASPM but quantitatively they were within 32% due to differences in the flow field. ASPM predictions compared well with the CFDM predictions for an asymmetric bifurcation. These results validate the simplified ASPM and the complex CFDM. ASPM predicts higher Sherwood number with a flat velocity inlet profile compared to a parabolic inlet velocity profile. Sherwood number increases with the inlet average velocity, wall mass transfer coefficient, and bifurcation angle since the boundary layer grows slower in the parent and daughter branches.  相似文献   

7.
The interlayer energy between two circular graphene sheets of nanometre scale, which is curved into cylindrical shape with different curvature radius, is investigated by a molecular force field based on a registry-dependent interlayer interaction potential. It is found that there is a special interlayer stacking angle near which the interlayer energy is significantly lower. This interlayer energy-minimum stacking registry angle shifts away from the original Bernal (AB) stacking orientation when the curvature radius of curved graphene sheets is less than 20 nm, and increases with decreasing curvature radius beyond this point. The stability of interlayer energy-minimum stacking of the curved graphene sheets decreases with decreasing curvature radius.  相似文献   

8.
The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete.  相似文献   

9.
To assess the forces and stresses present in fusion pore during secretion the stationary convective flux of lipid through a fusion pore connecting two planar membranes under different tensions was investigated through computer simulations. The physics of the problem is described by Navier-Stokes equations, and the convective flux of lipid was evaluated using finite element method. Each of the membrane monolayer is considered separately as an isotropic, homogeneous and incompressible viscous medium with the same viscosity. The difference in membrane tensions, which is simulated as the pressure difference at two ends of each monolayer, is the driving force of the lipid flow. The two monolayers interact by sliding past each other with inter-monolayer frictional viscosity. Fluid velocity, pressure, shear and normal stresses, viscous and frictional dissipations and forces were calculated to evaluate where the fusion pore will deform, extend (or compress) and dilate. The pressure changes little in the planar sections, whereas in the toroidal section the change is rapid. The magnitude of lipid velocity peaks at the pore neck. The radial lipid velocity is zero at the neck, has two peaks one on each side of the pore neck, and diminishes without going to zero in planar parts of two monolayers. The peaks are of opposite signs due to the change of direction of lipid flow. The axial velocity is confined to the toroidal section, peaks at the neck and is clearly greater in the outer monolayer. As a result of the spatially highly uneven lipid flow the membrane is under a significant stress, shear and normal. The shear stress, which indicates where the membrane will deform without changing the volume, has two peaks placed symmetrically about the neck. The normal stress shows where the membrane may extend or compress. Both, the radial and axial normal stresses are negative (extensive) in the upper toroidal section and positive (compressive) in the lower toroidal section. The pressure difference determines lipid velocity and velocity dependent variables (shear as well as normal axial and radial stresses), but also contributes directly to the force on the membranes and critically influences where and to what extent the membrane will deform, extend or dilate. The viscosity coefficient (due to friction of one element of lipid against neighboring ones), and frictional coefficient (due to friction between two monolayers sliding past each other) further modulate some variables. Lipid velocity rises as pressure difference increases, diminishes as the viscosity coefficient rises but is unaffected by the frictional coefficient. The shear and normal stresses rise as pressure difference increases, but the change of the viscosity coefficients has no effect. Both the viscous dissipation (which has two peaks placed symmetrically about the neck) and much smaller frictional dissipation (which peaks at the pore neck) rise with pressure and diminish if the viscosity coefficient rises, but only the frictional dissipation increases if the frictional coefficient increases. Finally, the radial force causing pore dilatation, and which is significant only in the planar section of the vesicular membrane, is governed almost entirely by the pressure, whereas the viscosity and frictional coefficients have only a marginal effect. Many variables are altered during pore dilatation. The lipid velocity and dissipations (viscous and frictional) rise approximately linearly with pore radius, whereas the lipid mass flow increases supra-linearly owing to the combined effects of the changes in pore radius and greater lipid velocity. Interestingly the radial force on the vesicular membrane increases only marginally.  相似文献   

10.
This work presents a novel photo‐electrochemical architecture based on the 3D pyramid‐like graphene/p‐Si Schottky junctions. Overcoming the conventional transfer technique by which only planar graphene/Si Schottky junctions are currently available, this work demonstrates the 3D pyramid‐like graphene/p‐Si Schottky junction photocathode, which greatly enhances light harvesting efficiency and exhibits promising photo‐electrochemical performance for hydrogen generation. The formation of 3D pyramid‐like graphene/p‐Si Schottky junctions exhibits enhanced electrochemical activity and promotes charge separation efficiency compared with the bare pyramid Si surface without graphene. The inherent chemical inertness of graphene significantly improves the operational stability of 3D graphene/p‐Si Schottky junction photo‐electrochemical cells. The 3D pyramid‐like graphene/p‐Si Schottky junction photocathode delivers an onset potential of 0.41 V and a saturated photocurrent density of ?32.5 mA cm?2 at 0 V (vs RHE) with excellent stability comparable to values reported for textured or nanostructured p‐Si photocathodes coated with ultrathin oxide layers by the conventional atomic layer deposition technique. These results suggest that the formation of graphene/Si Schottky junctions with a 3D architecture is a promising approach to improve the performance and durability of Si‐based photo‐electrochemical systems for water splitting or solar‐to‐fuel conversion.  相似文献   

11.
A novel image-charge detection technique was used to investigate the mechanical elasticity of bare bacterial spores during high-velocity impact. Spores of Bacillus subtilis introduced to vacuum using electrospray and aerodynamic acceleration impacted and rebounded off of a glass plate. A dual-stage, asymmetric image-charge detector measured the velocity and direction of each spore both before and after impact with the glass surface. Two ranges of impact velocity were investigated, with average initial velocities of 197 ± 17 and 145 ± 12 m/s. Impacts were strongly inelastic, with most of the translational kinetic energy lost upon impact, similar to polystyrene particles of similar size under similar impact velocities. Specifically, 69% (± 16%) and 74% (± 11%) of initial kinetic energy was lost in impacts at the two velocity ranges, respectively. The average coefficients of restitution for the two velocity regimes were 0.53 ± 0.15 and 0.49 ± 0.12. There was no statistically significant difference in the fractional kinetic energy loss between these two populations. The variance of these results is much larger than experiments using polystyrene spheres of comparable size. These results imply significant plastic deformation of the spore—a striking result given that spores of this strain of B. subtilis are known to survive impacts on glass at these velocities. Triboelectric charge transfer during impact was also observed. Although much is known about spore elasticity from static measurements, this is the first study to investigate the elastic properties of bacterial spores in a dynamic scenario, as well as the first demonstration of an image charge detector for measurements of rebounding particles.  相似文献   

12.
A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration.  相似文献   

13.
Graphene-based nanopore devices hold great promise for the next generation DNA sequencing because graphene is atomically thin which is extremely important for single base recognition. To understand the fundamental details of DNA translocation through a graphene nanopore, in this work, molecular dynamics simulations of ssDNA translocation through the nanopore were performed to trace the nucleobase trajectories and to investigate the impact of the number of layers of the graphene membrane and the electrical field on ssDNA translocation. We found that the velocity of ssDNA translocation was speeded up with the higher bias voltage, and the two-layered and five-layered graphene membrane with 1.0-nm diameter circular nanopore could discern different DNA strand by the translocation time.  相似文献   

14.
Risk for injury during a fall depends on the position and velocity of the body segments at the moment of impact. One technique for reducing impact velocity is to absorb energy in the lower extremity muscles during descent, as occurs during squatting or sitting. However, the protective value of this response may depend on the time during descent when the response is initiated. We tested this hypothesis by conducting backward falling experiments with young women (n = 23; aged 21-29 years), who fell onto a soft gymnasium mattress after being suddenly releasing from an inclined position. In trials where subjects were released from a 5 degrees lean, average impact velocities were reduced by 18% when squatting was utilized as opposed to inhibited. Furthermore, increases in the release angle caused an increase in average impact velocity of 8% between lean angles of 2 degrees and 5 degrees, and 7% between lean angles of 5 degrees and 12 degrees. This was due to declines in peak extensor torques and peak flexion rotations, and corresponding reductions in both joint work and potential energy at impact. These results suggest that squatting during descent reduces impact severity, but the effectiveness of the response depends on the stage during descent when it is initiated, diminishing in benefit as the fall progresses and the state of imbalance grows increasingly severe.  相似文献   

15.
The tangential neurons in the lobula plate region of the flies are known to respond to visual motion across broad receptive fields in visual space.When intracellular recordings are made from tangential neurons while the intact animal is stimulated visually with moving natural imagery,we find that neural response depends upon speed of motion but is nearly invariant with respect to variations in natural scenery. We refer to this invariance as velocity constancy. It is remarkable because natural scenes, in spite of similarities in spatial structure, vary considerably in contrast, and contrast dependence is a feature of neurons in the early visual pathway as well as of most models for the elementary operations of visual motion detection. Thus, we expect that operations must be present in the processing pathway that reduce contrast dependence in order to approximate velocity constancy.We consider models for such operations, including spatial filtering, motion adaptation, saturating nonlinearities, and nonlinear spatial integration by the tangential neurons themselves, and evaluate their effects in simulations of a tangential neuron and precursor processing in response to animated natural imagery. We conclude that all such features reduce interscene variance in response, but that the model system does not approach velocity constancy as closely as the biological tangential cell.  相似文献   

16.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

17.
A series of graphene (GR) pull-out simulations based on molecular dynamics (MD) were carried out to investigate the interfacial mechanical properties between GR and a polymer matrix (polyethylene: PE). The effects of pull-out velocity, number of vacancy defect in GR and temperature on the interfacial mechanical properties of a GR/PE nanocomposite system were explored. The obtained results showed that the pull-out velocity and the temperature have significant influences on the interfacial mechanical properties for a perfect GR. Moderate vacancy defects in GR can effectively enhance the interfacial mechanical properties in GR-based polymer nanocomposites.  相似文献   

18.
In the present study, the radial thermal rectification and thermal conductivity of the graphene were investigated by non-equilibrium molecular dynamics simulation and then corrected by quantum correction to make it closer to the fact. The Optimised three-body Tersoff potential is employed in order to simulate the interactions between the carbon atoms in the graphene sheet. A circular region in the centre and the one at the graphene edge are selected as hot and cold bath to generate radial temperature gradient. It is observed that the heat current passes through radially inward direction than outward with the same temperature gradient and hence there is a radial thermal rectification in graphene. Also, temperature distribution and heat flux are theoretically introduced as a function of distance from the graphene centre and then it is confirmed by the molecular dynamics simulation data. Finally, the influence of temperature gradient and size of graphene on radial thermal rectification and the impact of size on the radial thermal conductivity is investigated.  相似文献   

19.
This study examined the factors affecting the ball velocity and rotation for side-foot soccer kick using a numerical investigation. Five experienced male university soccer players performed side-foot kicks with various attack angles and impact points using a one-step approach. The kicking motions were captured three-dimensionally by two high-speed cameras at 2500 fps. The theoretical equations of the ball velocity and rotation were derived based on impact dynamic theory. Using the theoretical equations, the relationships of the ball velocity and rotation to the attack angle and impact point were obtained. The validity of the theoretical equations was verified by comparing the theoretical relationships with measurement values. Furthermore, simulations of the ball velocity and rotation were conducted using the theoretical equations. The theoretical relationships were in good agreement with the measurement values. The theoretical results confirmed the previously reported experimental results, and indicated that the impact point is more influential on the ball velocity than the attack angle and the attack angle is more influential on the ball rotation than the impact point. The simulation results indicated the following. The ball velocity produced by impact for all impact patterns is largely affected by the foot velocity immediately before impact but barely affected by the degree of slip between the foot and the ball. The ball rotation produced by an impact with a large attack angle is affected by the foot velocity immediately before impact and the degree of slip between the foot and the ball; however, these factors affect the ball rotation less than the attack angle.  相似文献   

20.
Multi-walled, single-walled and double-walled carbon nanotubes as well as graphene can be doped with boron and nitrogen. B2H6 has been generally used as the boron source while NH3 or pyridine is employed as the nitrogen source. Doping carbon nanotubes and graphene with boron and nitrogen brings about significant changes in the electronic structure and properties. Such doping not only results in desirable properties but also allows manipulation of properties for specific purposes. Doping with boron- and nitrogen-causes marked changes in the Raman spectra of the carbon nanostructures. In this article, we present the synthesis, characterization and properties of boron- and nitrogen-doped carbon nanotubes and graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号