首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Abstract

We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.  相似文献   

2.
While previous studies have assessed changes in corticospinal excitability following voluntary contraction coupled with electrical stimulation (ES), we sought to examine, for the first time in the field, real-time changes in corticospinal excitability. We monitored motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and recorded the MEPs using a mechanomyogram, which is less susceptible to electrical artifacts. We assessed the MEPs at each level of muscle contraction of wrist flexion (0%, 5%, or 20% of maximum voluntary contraction) during voluntary wrist flexion (flexor carpi radialis (FCR) voluntary contraction), either with or without simultaneous low-frequency (10 Hz) ES of the median nerve that innervates the FCR. The stimulus intensity corresponded to 1.2× perception threshold. In the FCR, voluntary contraction with median nerve stimulation significantly increased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.01). In addition, corticospinal excitability was significantly modulated by the level of FCR voluntary contraction. In contrast, in the extensor carpi radialis (ECR), FCR voluntary contraction with median nerve stimulation significantly decreased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.05). Thus, median nerve stimulation during FCR voluntary contraction induces reciprocal changes in cortical excitability in agonist and antagonist muscles. Finally we also showed that even mental imagery of FCR voluntary contraction with median nerve stimulation induced the same reciprocal changes in cortical excitability in agonist and antagonist muscles. Our results support the use of voluntary contraction coupled with ES in neurorehabilitation therapy for patients.  相似文献   

3.
Voluntary motor drive is an important central command that descends via the corticospinal tract to initiate muscle contraction. When electrical stimulation (ES) is applied to an antagonist or agonist muscle, it changes the agonist muscle’s representative motor cortex and thus its voluntary motor drive. In this study, we used a reaction time task to compare the effects of weak and strong ES of the antagonist or agonist muscle during the premotor period of a wrist extension. We recorded motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) that was applied to the extensor carpi radialis (ECR; agonist) and flexor carpi radialis (FCR; antagonist). When stronger ES intensities were applied to the antagonist, the MEP control ratio in the ECR significantly increased during the premotor time. Furthermore, the MEP control ratio with stronger antagonist ES intensity was significantly larger than that in the agonist for the same ES intensity. In the FCR, the MEP control ratio was also significantly greater at the strong ES intensity than at the weak ES intensity. Furthermore, the MEP control ratio in the antagonist with a strong ES intensity was significantly larger than that in the agonist with the same ES intensity. These results suggest that agonist corticomotor excitability might be enhanced by ES of the antagonist, which in turn strongly activates the descending motor system in the preparation of agonist contraction.  相似文献   

4.
Repetitive mirror symmetric bilateral upper limb may be a suitable priming technique for upper limb rehabilitation after stroke. Here we demonstrate neurophysiological and behavioural after-effects in healthy participants after priming with 20 minutes of repetitive active-passive bimanual wrist flexion and extension in a mirror symmetric pattern with respect to the body midline (MIR) compared to an control priming condition with alternating flexion-extension (ALT). Transcranial magnetic stimulation (TMS) indicated that corticomotor excitability (CME) of the passive hemisphere remained elevated compared to baseline for at least 30 minutes after MIR but not ALT, evidenced by an increase in the size of motor evoked potentials in ECR and FCR. Short and long-latency intracortical inhibition (SICI, LICI), short afferent inhibition (SAI) and interhemispheric inhibition (IHI) were also examined using pairs of stimuli. LICI differed between patterns, with less LICI after MIR compared with ALT, and an effect of pattern on IHI, with reduced IHI in passive FCR 15 minutes after MIR compared with ALT and baseline. There was no effect of pattern on SAI or FCR H-reflex. Similarly, SICI remained unchanged after 20 minutes of MIR. We then had participants complete a timed manual dexterity motor learning task with the passive hand during, immediately after, and 24 hours after MIR or control priming. The rate of task completion was faster with MIR priming compared to control conditions. Finally, ECR and FCR MEPs were examined within a pre-movement facilitation paradigm of wrist extension before and after MIR. ECR, but not FCR, MEPs were consistently facilitated before and after MIR, demonstrating no degradation of selective muscle activation. In summary, mirror symmetric active-passive bimanual movement increases CME and can enhance motor learning without degradation of muscle selectivity. These findings rationalise the use of mirror symmetric bimanual movement as a priming modality in post-stroke upper limb rehabilitation.  相似文献   

5.
We investigated whether the pulsed high frequency electromagnetic field (EMF) emitted by a mobile phone has short term effects on the human motor cortex. We measured motor evoked potentials (MEPs) elicited by single pulse transcranial magnetic stimulation (TMS), before and after mobile phone exposure (active and sham) in 10 normal volunteers. Three sites were stimulated (motor cortex (CTX), brainstem (BST) and spinal nerve (Sp)). The short interval intracortical inhibition (SICI) of the motor cortex reflecting GABAergic interneuronal function was also studied by paired pulse TMS method. MEPs to single pulse TMS were also recorded in two patients with multiple sclerosis showing temperature dependent neurological symptoms (hot bath effect). Neither MEPs to single pulse TMS nor the SICI was affected by 30 min of EMF exposure from mobile phones or sham exposure. In two MS patients, mobile phone exposure had no effect on any parameters of MEPs even though conduction block occurred at the corticospinal tracts after taking a bath. As far as available methods are concerned, we did not detect any short-term effects of 30 min mobile phone exposure on the human motor cortical output neurons or interneurons even though we can not exclude the possibility that we failed to detect some mild effects due to a small sample size in the present study. This is the first study of MEPs after electromagnetic exposure from a mobile phone in neurological patients.  相似文献   

6.

Objective

Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR) and if these aftereffects can be successfully assessed during controlled muscle contraction.

Methods

We implemented a double blind cross-over design in which participants (n = 16) completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2) anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle.

Results

Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2) were removed. We found no changes in the cortical silent period.

Conclusion

These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.  相似文献   

7.
Whole-body water immersion (WI) has been reported to change sensorimotor integration. However, primary motor cortical excitability is not affected by low-intensity afferent input. Here we explored the effects of whole-body WI and water flow stimulation (WF) on corticospinal excitability and intracortical circuits. Eight healthy subjects participated in this study. We measured the amplitude of motor-evoked potentials (MEPs) produced by single transcranial magnetic stimulation (TMS) pulses and examined conditioned MEP amplitudes by paired-pulse TMS. We evaluated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) using the paired-TMS technique before and after 15-min intervention periods. Two interventions used were whole-body WI with water flow to the lower limbs (whole-body WF) and whole-body WI without water flow to the lower limbs (whole-body WI). The experimental sequence included a baseline TMS assessment (T0), intervention for 15 min, a second TMS assessment immediately after intervention (T1), a 10 min resting period, a third TMS assessment (T2), a 10 min resting period, a fourth TMS assessment (T3), a 10 min resting period, and the final TMS assessment (T4). SICI and ICF were evaluated using a conditioning stimulus of 90% active motor threshold and a test stimulus adjusted to produce MEPs of approximately 1–1.2 mV, and were tested at intrastimulus intervals of 3 and 10 ms, respectively. Whole-body WF significantly increased MEP amplitude by single-pulse TMS and led to a decrease in SICI in the contralateral motor cortex at T1, T2 and T3. Whole-body WF also induced increased corticospinal excitability and decreased SICI. In contrast, whole-body WI did not change corticospinal excitability or intracortical circuits.  相似文献   

8.
The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ~40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P < 0.001), a 41% decline in resting M-wave (P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness (P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.  相似文献   

9.
The objective was to explore if vibration superposed to tonic contraction induces plastic changes in the contra- and ipsilateral motor cortex. Healthy subjects (n = 12) abducted the right index finger with a force 5% of maximal voluntary contraction (MVC) against the lever of a torque motor while a 60 Hz vibration stimulus of 10 min was delivered. Motor evoked potentials (MEPs) after single and paired-pulse transcranial magnetic stimulation (TMS) were recorded from the first dorsal interosseous muscle of right and left hand pre, during, post and 30 min post-stimulation. The TMS assessments were employed with tonic contraction alone (TONIC) and with superposed vibrostimulation (VIBRO), each for the ipsi- and contralateral cortex separately. In the contralateral cortex: resting motor threshold (rMT) decreased, MEP amplitudes increased, short-interval intracortical inhibition (SICI) reduced and intracortical facilitation (ICF) increased post VIBRO, while no changes occurred post TONIC. In the ipsilateral cortex: rMT decreased, MEP amplitude increased and SICI reduced during TONIC, while no changes occurred post TONIC, during and post VIBRO. Vibration superposed to tonic contraction, induces lasting (30 min) plastic changes, whereas contraction alone caused no outlasting effects. Mainly intrinsic intracortical mechanisms are involved because spinal adaptation could be excluded (F-wave assessments). These findings have a therapeutic potential in the functional recovery of motor deficits with robot-aided devices.  相似文献   

10.
The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor execution.  相似文献   

11.
Co-activation of homo- and heterotopic representations in the primary motor cortex (M1) ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS) studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI) and recruitment curves (RCs) of motor evoked potentials (MEPs) in the right M1, and responses were recorded from the left rectus femoris (RF) and left tibialis anterior (TA) muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal movement.  相似文献   

12.
Group I muscle afferents modulate the excitability of motor neurons through excitatory and inhibitory spinal reflexes. Spinal reflex relationships between various muscle pairs are well described in experimental animals but not in the human upper limb, which exhibits a fine control of movement. In the present study, spinal reflexes between the extensor carpi radialis (ECR) and pronator teres (PT) muscles were examined in healthy human subjects using a post-stimulus time histogram method. Electrical stimulation of low-threshold afferents of ECR nerves increased the motor neuron excitability in 31 of 76 PT motor units (MUs) in all eight subjects tested, while stimulation of low-threshold afferents of PT nerves increased the motor neuron excitability in 36 of 102 ECR MUs in all 10 subjects. The estimated central synaptic delay was almost equivalent to that of homonymous facilitation. Mechanical stimulation (MS) of ECR facilitated 16 of 30 PT MUs in all five subjects tested, while MS of PT facilitated 17 of 30 ECR MUs in all six subjects. These results suggest excitatory reflex (facilitation) between PT and ECR. Group I afferents should mediate the facilitation through a monosynaptic path.  相似文献   

13.
Short interval intracortical inhibition (SICI) of motor cortex, measured by transcranial magnetic stimulation (TMS) in a passive (resting) condition, has been suggested as a neurophysiological marker of hyperactivity in attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to determine motor excitability in a go/nogo task at stages of response preparation, activation and suppression in children with ADHD, depending on the level of hyperactivity and impulsivity. Motor evoked potentials were recorded in 29 typically developing children and 43 children with ADHD (subdivided in two groups with higher and lower levels of hyperactivity/impulsivity; H/I-high and H/I-low). In the H/I-high group, SICI was markedly reduced in the resting condition and during response preparation. Though these children were able to increase SICI when inhibiting a response, SICI was still reduced compared to typically developing children. Interestingly, SICI at rest and during response activation were comparable, which may be associated with their hypermotoric behaviour. In the H/I-low group, response activation was accompanied by a pronounced decrease of SICI, indicating reduced motor control in the context of a fast motor response. In summary, different excitability patterns were obtained for the three groups allowing a better understanding of dysfunctional response activation and inhibition processes within the motor cortex in children with ADHD.  相似文献   

14.
Plastic neural changes have been documented in relation to different types of physical activity, but little is known about central nervous system plasticity accompanying reduced physical activity and immobilization. In the present study we investigated whether plastic neural changes occur in relation to 1 wk of immobilization of the nondominant wrist and hand and a corresponding period of recovery in 10 able-bodied volunteers. After immobilization, maximal voluntary contraction torque decreased and the variability of submaximal static contractions increased significantly without evidence of changes in muscle contractile properties. Hoffmann (H)-reflex amplitudes and the ratios of H-slope to M-slope increased significantly in flexor carpi radialis and abductor pollicis brevis at rest and during contraction without changes in corticospinal excitability, estimated from motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation. Corticomuscular coherence measures were derived from EEG and EMG obtained during static contractions. After immobilization, corticomuscular coherence in the 15- to 35-Hz range associated with maximum negative cumulant values at lags corresponding to MEP latencies decreased. One week after cast removal, all measurements returned to preimmobilization levels. The increased H-reflex amplitudes without changes in MEPs may suggest that presynaptic inhibition or postactivation depression of Ia afferents is reduced following immobilization. Reduced corticomuscular coherence may be caused by changes in afferent input at spinal and cortical levels or by changes in the descending drive from motor cortex. Further studies are needed to elucidate the mechanisms underlying the observed increased spinal excitability and reduced coupling between motor cortex and spinal motoneuronal activity following immobilization.  相似文献   

15.
Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi)) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1(ipsi) would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi) facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi) only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi) than in the right. In experiment 2, we tested whether the modulations of M1(ipsi) facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi). We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.  相似文献   

16.
Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. Torque and EMG were recorded from elbow flexor and extensor muscles. One study (n = 6) measured muscle contraction times and relaxation rates during brief maximal and submaximal contractions in fresh and fatigued muscle. Another study (n = 7) aimed to 1) assess the reproducibility of muscle contractile properties during brief voluntary contractions in fresh muscle, 2) validate the technique for contractile properties in passively heated muscle, and 3) apply the technique to study contractile properties during sustained maximal voluntary contractions. In both studies, muscle contractile properties during voluntary contractions were compared with the resting twitch evoked by motor nerve stimulation. Measurement of muscle contractile properties during voluntary contractions is reproducible in fresh muscle and reveals faster and slower muscle relaxation rates in heated and fatigued muscle, respectively. The technique is more sensitive to altered muscle state than the traditional motor nerve resting twitch. Use of TMS during sustained maximal contractions reveals slowing of muscle contraction and relaxation with different time courses and a decline in voluntary activation. Voluntary output from the motor cortex becomes insufficient to maintain complete activation of muscle, although slowing of muscle contraction and relaxation indicates that lower motor unit firing rates are required for fusion of force.  相似文献   

17.
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke.  相似文献   

18.
Transcranial magnetic stimulation (TMS) has proven to be a useful tool in investigating the role of the articulatory motor cortex in speech perception. Researchers have used single-pulse and repetitive TMS to stimulate the lip representation in the motor cortex. The excitability of the lip motor representation can be investigated by applying single TMS pulses over this cortical area and recording TMS-induced motor evoked potentials (MEPs) via electrodes attached to the lip muscles (electromyography; EMG). Larger MEPs reflect increased cortical excitability. Studies have shown that excitability increases during listening to speech as well as during viewing speech-related movements. TMS can be used also to disrupt the lip motor representation. A 15-min train of low-frequency sub-threshold repetitive stimulation has been shown to suppress motor excitability for a further 15-20 min. This TMS-induced disruption of the motor lip representation impairs subsequent performance in demanding speech perception tasks and modulates auditory-cortex responses to speech sounds. These findings are consistent with the suggestion that the motor cortex contributes to speech perception. This article describes how to localize the lip representation in the motor cortex and how to define the appropriate stimulation intensity for carrying out both single-pulse and repetitive TMS experiments.  相似文献   

19.

Background

There is evidence that interventions aiming at modulation of the motor cortex activity lead to pain reduction. In order to understand further the role of the motor cortex on pain modulation, we aimed to compare the behavioral (pressure pain threshold) and neurophysiological effects (transcranial magnetic stimulation (TMS) induced cortical excitability) across three different motor tasks.

Methodology/Principal Findings

Fifteen healthy male subjects were enrolled in this randomized, controlled, blinded, cross-over designed study. Three different tasks were tested including motor learning with and without visual feedback, and simple hand movements. Cortical excitability was assessed using single and paired-pulse TMS measures such as resting motor threshold (RMT), motor-evoked potential (MEP), intracortical facilitation (ICF), short intracortical inhibition (SICI), and cortical silent period (CSP). All tasks showed significant reduction in pain perception represented by an increase in pressure pain threshold compared to the control condition (untrained hand). ANOVA indicated a difference among the three tasks regarding motor cortex excitability change. There was a significant increase in motor cortex excitability (as indexed by MEP increase and CSP shortening) for the simple hand movements.

Conclusions/Significance

Although different motor tasks involving motor learning with and without visual feedback and simple hand movements appear to change pain perception similarly, it is likely that the neural mechanisms might not be the same as evidenced by differential effects in motor cortex excitability induced by these tasks. In addition, TMS-indexed motor excitability measures are not likely good markers to index the effects of motor-based tasks on pain perception in healthy subjects as other neural networks besides primary motor cortex might be involved with pain modulation during motor training.  相似文献   

20.
The effect of unilateral tonic muscle activity with and without co-activation of the antagonists on motor cortex excitability has been studied. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseus muscles of both hands in response to transcranial magnetic stimulation (TMS) during relax, isometric index finger abduction and antagonistic co-activation. The intracortical inhibition (ICI) and intracortical facilitation (ICF) were investigated by paired-pulse TMS with interstimulus intervals of 3 and 13 ms. The unilateral tonic activation of the right hand facilitated contralateral and ipsilateral responses (cMEP and iMEP) recorded from both hands with an exception of iMEPs recorded from the left hand. During paired-pulse TMS ICI for cMEPs was not influenced by the unilateral tonic activity in both hands, while ICF was suppressed when MEPs were recorded from the active right hand. The effect of unilateral tonic activity on iMEP in response to paired-pulse TMS was essentially different: generally, ICI was greater for iMEPs and ICF was completely abolished with an exception of iMEPs recorded from the left hand during right finger isometric abduction when a strong ICF was evident. The decreased ICF and/or increased ICI are assumed to reflect mechanisms underlying the co-activation of antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号