首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leptin-deficient mice (ob/ob) are an excellent murine model for obesity, insulin resistance, and diabetes, all of which are components of a multiple risk factor syndrome that, along with hypercholesterolemia, precipitates a potential high risk for atherosclerosis. In the current study, we show an unexpectedly severe hyperlipidemia in ob/ob mice on a background of low density lipoprotein receptor (LDLR) deficiency (-/-). Doubly mutant mice (LDLR-/-;ob/ob) exhibited striking elevations in both total plasma cholesterol (TC) and triglyceride (TG) levels (1715 +/- 87 and 1016 +/- 172 mg/dl, respectively), at age 3-4 months, resulting in extensive atherosclerotic lesions throughout the aorta by 6 months. Lipoprotein analyses revealed the elevated TC and TG levels to be due to a large increase in an apoB-containing broad-beta remnant lipoprotein fraction. While fasting, diet restriction, and low level leptin treatment significantly lowered TG levels, they caused only slight changes in TC levels. Hepatic cholesterol and triglyceride contents as well as mRNA levels of cholesterologenic and lipogenic enzymes suggest that leptin deficiency increased hepatic triglyceride production but did not change cholesterol production in ob/ob mice regardless of their LDLR genotype. These data provide evidence that the hypertriglyceridemia and hypercholesterolemia in the doubly mutant mice are caused by distinct mechanisms and point to the possibility that leptin might have some impact on plasma cholesterol metabolism, possibly through an LDLR-independent pathway. This model will be an excellent tool for future studies on the relationship between impaired fuel metabolism, increased plasma remnant lipoproteins, diabetes, and atherosclerosis.  相似文献   

2.
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.  相似文献   

3.
PURPOSE OF THIS REVIEW: This review provides an update on recent advances in the diagnosis and management of children with familial hypercholesterolemia. RECENT FINDINGS: A large cross-sectional cohort study of paediatric familial hypercholesterolemia demonstrated that affected children had a 5-fold more rapid increase of carotid arterial wall intima-media thickness during childhood years than their affected siblings. This faster progression led to a significant deviation in terms of intima-media thickness from the age of 12 years and onwards. Low-density lipoprotein cholesterol was a strong and independent predictor of carotid artery intima-media thickness in these children, which confirms the pivotal role of low-density lipoprotein cholesterol for the development of atherosclerosis. In this condition lipid lowering by statin therapy is accompanied by carotid intima-media thickness regression in familial-hypercholesterolemic children, which suggests that initiation of low-density lipoprotein cholesterol-reducing medication in childhood already can inhibit or possibly reduce the faster progression of atherosclerosis. Furthermore, these trials demonstrated that statins are safe and do not impair growth or sexual development in these children. Conversely, products containing plant sterols reduced low-density lipoprotein cholesterol levels by 14%, but did not improve endothelial dysfunction as assessed by flow-mediated dilatation. SUMMARY: Children with familial hypercholesterolemia clearly benefit from lipid-lowering strategies. Statins are safe agents and have been proven to reduce elevated low-density lipoprotein cholesterol levels significantly. In addition, statins improve surrogate markers for atherosclerosis. Therefore these agents should become the pivotal therapy in children with familial hypercholesterolemia.  相似文献   

4.
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.  相似文献   

5.
Deletion of acyl-CoA:cholesterol O-acyltransferase 2 (ACAT2) in mice results in resistance to diet-induced hypercholesterolemia and protection against atherosclerosis. Recently, our group has shown that liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO)-mediated targeting likewise limits atherosclerosis. However, whether this atheroprotective effect was mediated by: 1) prevention of packaging of cholesterol into apoB-containing lipoproteins, 2) augmentation of nascent HDL cholesterol secretion, or 3) increased hepatobiliary sterol secretion was not examined. Therefore, the purpose of these studies was to determine whether hepatic ACAT2 is rate-limiting in all three of these important routes of cholesterol homeostasis. Liver-specific depletion of ACAT2 resulted in reduced packaging of cholesterol into apoB-containing lipoproteins (very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein), whereas high density lipoprotein cholesterol levels remained unchanged. In the liver of ACAT2 ASO-treated mice, cholesterol ester accumulation was dramatically reduced, yet there was no reciprocal accumulation of unesterified cholesterol. Paradoxically, ASO-mediated depletion of hepatic ACAT2 promoted fecal neutral sterol excretion without altering biliary sterol secretion. Interestingly, during isolated liver perfusion, ACAT2 ASO-treated livers had augmented secretion rates of unesterified cholesterol and phospholipid. Furthermore, we demonstrate that liver-derived cholesterol from ACAT2 ASO-treated mice is preferentially delivered to the proximal small intestine as a precursor to fecal excretion. Collectively, these studies provide the first insight into the hepatic itinerary of cholesterol when cholesterol esterification is inhibited only in the liver, and provide evidence for a novel non-biliary route of fecal sterol loss.  相似文献   

6.
Hypercholesterolemia is a preventable risk factor for atherosclerosis and cardiovascular disease. However, the mechanisms of diosgenin (DG) that promote cholesterol homeostasis and alleviate hypercholesterolemia remain elusive. To investigate the effects and molecular mechanisms of the promotion of cholesterol metabolism by DG, a rat model of hypercholesterolemia was induced by providing a high-fat diet for 4 weeks. After 4 weeks, the rats were intragastrically administered high-dose DG (0.3 g/kg/d), low-dose DG (0.15 g/kg/d) or simvastatin (4 mg/kg/d) once a day for 8 weeks. The serum and hepatic cholesterol were tested, the mRNA and protein expression levels of Niemann-Pick C1-Like 1 (NPC1L1), liver X receptor-α (LXR-α) and the ATP-binding cassette G5/G8 (ABCG5/G8) transporters were measured. The results indicate that DG could reduce body weight, decrease the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, liver total cholesterol and free cholesterol levels compared to those in the controls. Simultaneously, liver tissue pathological morphology analyses revealed that DG could attenuate hepatic steatosis compared to that in the high-fat diet group. Further investigation demonstrated that DG significantly decreased the expression of NPC1L1 and LXR-α in the intestine and markedly increased the expression of ABCG5/G8 in the liver and intestine. Compared to the high-fat diet group, the rats in the DG-treated groups ameliorated hypercholesterolemia in a dose- and time-dependent manner. These data suggest that DG may not only inhibit intestinal cholesterol absorption by downregulating NPC1L1 but also enhance cholesterol excretion by increasing the expression of ABCG5/G8. DG could be a new candidate for the prevention of hypercholesterolemia.  相似文献   

7.
Atherosclerosis is a complex inflammatory disease that involves disrupted cellular cholesterol levels and formation of foam cells. Studies about long noncoding RNA (lncRNA) have revealed its function in the development of atherosclerosis, by mediating reverse cholesterol transport and formation of foam cells. In this study, we found that oxidized low-density lipoprotein (ox-LDL) markedly decreased lncRNA AC096664.3 in vascular smooth muscle cells (VSMCs) and THP-1 macrophages. We also found that ox-LDL reduced ATP-binding cassette (ABC) G1 through inhibiting lncRNA AC096664.3 in VSMCs. Further experiments showed that the downregulation of lncRNA AC096664.3 reduced ABCG1 expression through inhibiting the expression of peroxisome proliferator–activated receptor-γ (PPAR-γ) and that ox-LDL reduced ABCG1 expression through inhibiting the expression of PPAR-γ. Furthermore, we discovered that ox-LDL inhibited ABCG1 via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway, which led to an increase in total and free cholesterol in VMSCs. Thus, we confirmed that ox-LDL induces cholesterol accumulation via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway in VSMCs, indicating a promising novel therapy in protecting against atherosclerosis.  相似文献   

8.
The link between low density lipoprotein and coronary heart disease has been widely studied. Oxidized LDL damages the artery wall, and a diet rich in vitamins and low in saturated fat and cholesterol may reduce this risk. Not only hypercholesterolemia but also low levels of high density lipoprotein cholesterol are critical risk factors for atherosclerosis and related diseases. It has been reported that high doses of B complex vitamin may be useful in lowering blood cholesterol and triglyceride levels in the body, however the use of this compound has been limited by an annoying flush and concern for toxicity. Niacin is a B-complex vitamin with anti-atherosclerotic properties and is an effective medication for raising high density lipoprotein. The combination of niacin with other lipid-lowering drugs, such as statins, reduces the dynamic of atherosclerosis disease. In addition, vitamin E is one of the most important lipid soluble anti-oxidants in humans, and reduces atherosclerosis plaque, coronary artery diseases and myocardial infarction. Vitamin E protects the integrity of membranes by inhibiting lipid peroxidation. In this study we revisited the interrelationship between cholesterol, low density lipoproteins and vitamins.  相似文献   

9.
CETP (cholesteryl ester-transfer protein) is essential for neutral lipid transfer between HDL (high-density lipoprotein) and LDL (low-density lipoprotein) and plays a critical role in the reverse cholesterol transfer pathway. In clinical trials, CETP inhibitors increase HDL levels and reduce LDL levels, and therefore may be used as a potential treatment for atherosclerosis. In this review, we cover the analysis of CETP structure and provide insights into CETP-mediated lipid transfer based on a collection of structural and biophysical data.  相似文献   

10.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

11.
Therapeutic intervention for atherosclerosis has predominantly concentrated on regulating cholesterol levels; however, these therapeutics are not efficacious for all patients, suggesting that other factors are involved. This study was initiated to identify mechanisms that regulate atherosclerosis predisposition in mice other than cholesterol level regulation. To do so we performed quantitative trait locus analysis using two inbred strains that each carry the atherosclerosis phenotype-sensitizing Apoe deficiency and that have been shown to have widely disparate predilection to atherosclerotic lesion formation. One highly significant locus on chromosome 10 (LOD = 7.8) accounted for 19% of the variance in lesion area independent of cholesterol. Two additional suggestive loci were identified on chromosomes 14 (LOD = 3.2) and 19 (LOD = 3.2), each accounting for 7-8% of the lesion variance. In all, five statistically significant and suggestive loci affecting lesion size but not lipoprotein levels were identified. Many of these were recapitulated in an independent confirmatory cross. In summary, two independently performed crosses between C57BL/6 and FVB/N Apoe-deficient mice have revealed several previously unreported atherosclerosis susceptibility loci that are distinct from loci linked to lipoprotein levels.  相似文献   

12.
Cholestasis is characterized by hypercholesterolemia and the appearance of an abnormal lipoprotein, lipoprotein X (LpX), in plasma. The mechanisms responsible for this cholestatic plasma lipid phenotype are not fully understood. We used ATP-binding cassette A1 (ABCA1)-/- and scavenger receptor class B type I (SR-BI)-/- mice to test the hypothesis that hepatic sinusoidal cholesterol transporters contribute to LpX formation and hypercholesterolemia during cholestasis. Bile-duct ligation (BDL) of both ABCA1-/- and SR-BI-/- mice, as well as their respective controls, induced a dramatic increase in plasma cholesterol and phospholipid concentrations. Plasma fractionation revealed the presence of LpX in plasma of cholestatic mice, irrespective of their genetic background. We observed that the presence of HDL before cholestasis, a decrease in the activity of LCAT, and an increase in VLDL synthesis were not required for hypercholesterolemia and lipoprotein modifications induced by obstructive cholestasis in mice. In addition, murine cholestasis resulted in increased hepatic cholesterol synthesis that may contribute to the higher plasma free cholesterol levels found during the early hours after BDL. Together these findings indicate that hypercholesterolemia and LpX formation associated with obstructive cholestasis are correlated with an increase in hepatic cholesterol synthesis and are independent of plasma HDL levels, LCAT activity, VLDL synthesis, and ABCA1 and SR-BI expression.  相似文献   

13.
The effects of polarized-light therapy (PLT) on high-cholesterol diet (HCD)-induced hypercholesterolemia and atherosclerosis were investigated in comparison with that of lovastatin in rabbits. Hypercholesterolemia was induced by feeding male New Zealand white rabbits with 1% cholesterol in diet for 2 weeks and maintained with 0.5% cholesterol for 6 weeks, followed by normal diet for 2 weeks for recovery. Lovastatin (0.002% in diet) or daily 5-min or 20-min PLT on the outside surface of ears was started 2 weeks after induction of hypercholesterolemia. Hypercholesterolemic rabbits exhibited great increases in serum cholesterol and low-density lipoproteins (LDL) levels, and finally severe atheromatous plaques formation covering 57.5% of the arterial walls. Lovastatin markedly reduced both the cholesterol and LDL, but the reducing effect (47.5%) on atheroma formation was relatively low. By comparison, 5-min PLT preferentially decreased LDL, rather than cholesterol, and thereby potentially reduced the atheroma area to 42.2%. Notably, 20-min PLT was superior to lovastatin in reducing both the cholesterol and LDL levels as well as the atheromatous plaque formation (26.4%). In contrast to the increases in blood alanine transaminase and aspartate transaminase following lovastatin treatment, PLT did not cause hepatotoxicity. In addition, PLT decreased platelets and hematocrit level. The results indicate that PLT attenuates atherosclerosis not only by lowering blood cholesterol and LDL levels, but also by improving blood flow without adverse effects. Therefore, it is suggested that PLT could be a safe alternative therapy for the improvement of hypercholesterolemia and atherosclerosis.  相似文献   

14.
高密度脂蛋白(high density lipoprotein,HDL)血浆水平与动脉粥样硬化(atherosclerosis,AS)性心血管疾病呈负相关,成为抗AS的重要靶点和热点.然而,近年来多个临床试验未能证明升高血浆HDL的水平对心血管的保护作用,使得人们开始重新审视HDL抗AS功能生物学特性的复杂性.近5年来的研究发现,HDL可通过对造血干细胞(hematopoietic stem cells,HSCs)和内皮祖细胞(endothelial progenitor cells,EPCs)功能的调节发挥抗AS 的作用,本文就这一新机制进行综述,期待为HDL迄今尚不完全清楚的复杂心血管保护机制提供研究思路.  相似文献   

15.
胆固醇是生命活动必不可少的脂类物质,但当体内胆固醇水平过高时,就会引起高胆固醇血症,进而导致动脉粥样硬化、脑中风和冠心病。人体内胆固醇有两种来源:以乙酰辅酶A为原料从头合成,或者通过小肠从食物中吸收。现今,过量的胆固醇摄取是引起高胆固醇血症的重要原因。胆固醇在小肠中的吸收是一个复杂的、由多个步骤组成的连续的分解、转运以及重新酯化的过程。其中由Niemann-Pick C1 Like 1(NPC1L1)蛋白介导肠道中胆固醇进入吸收细胞,是胆固醇吸收的限速步骤。本文重点总结了小肠胆固醇吸收的分子途径、调控机制、医药研发现状及与low-density lipoprotein receptor(LDLR)内吞过程的比较。  相似文献   

16.
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of TG-rich lipoproteins. To elucidate the physiological roles of LPL in lipid and lipoprotein metabolism, we generated transgenic rabbits expressing human LPL. In postheparinized plasma of transgenic rabbits, the human LPL protein levels were about 650 ng/ml, and LPL enzymatic activity was found at levels up to 4-fold greater than that in nontransgenic littermates. Increased LPL activity in transgenic rabbits was associated with as much as an 80% decrease in plasma triglycerides and a 59% decrease in high density lipoprotein-cholesterol. Analysis of the lipoprotein density fractions revealed that increased expression of the LPL transgene resulted in a remarkable reduction in the level of very low density lipoproteins as well as in the level of intermediate density lipoproteins. In addition, LDL cholesterol levels in transgenic rabbits were significantly increased. When transgenic rabbits were fed a cholesterol-rich diet, the development of hypercholesterolemia and aortic atherosclerosis was dramatically suppressed in transgenic rabbits. These results demonstrate that systemically increased LPL activity functions in the metabolism of all classes of lipoproteins, thereby playing a crucial role in plasma triglyceride hydrolysis and lipoprotein conversion, and that overexpression of LPL protects against diet-induced hypercholesterolemia and atherosclerosis.  相似文献   

17.
The perceived relationship between dietary cholesterol, plasma cholesterol and atherosclerosis is based on three lines of evidence: animal feeding studies, epidemiological surveys, and clinical trials. Over the past quarter century studies investigating the relationship between dietary cholesterol and atherosclerosis have raised questions regarding the contribution of dietary cholesterol to heart disease risk and the validity of dietary cholesterol restrictions based on these lines of evidence. Animal feeding studies have shown that for most species large doses of cholesterol are necessary to induce hypercholesterolemia and atherosclerosis, while for other species even small cholesterol intakes induce hypercholesterolemia. The species-to-species variability in the plasma cholesterol response to dietary cholesterol, and the distinctly different plasma lipoprotein profiles of most animal models make extrapolation of the data from animal feeding studies to human health extremely complicated and difficult to interpret. Epidemiological surveys often report positive relationships between cholesterol intakes and cardiovascular disease based on simple regression analyses; however, when multiple regression analyses account for the colinearity of dietary cholesterol and saturated fat calories, there is a null relationship between dietary cholesterol and coronary heart disease morbidity and mortality. An additional complication of epidemiological survey data is that dietary patterns high in animal products are often low in grains, fruits and vegetables which can contribute to increased risk of atherosclerosis. Clinical feeding studies show that a 100 mg/day change in dietary cholesterol will on average change the plasma total cholesterol level by 2.2-2.5 mg/dl, with a 1.9 mg/dl change in low density lipoprotein (LDL) cholesterol and a 0.4 mg/dl change in high density lipoprotein (HDL) cholesterol. Data indicate that dietary cholesterol has little effect on the plasma LDL:HDL ratio. Analysis of the available epidemiological and clinical data indicates that for the general population, dietary cholesterol makes no significant contribution to atherosclerosis and risk of cardiovascular disease.  相似文献   

18.
This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs—statins and cholesterol absorption blockers—in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.  相似文献   

19.
20.
Platelet-neutrophil interaction is well known for its role in inflammatory diseases; however, its biological role in atherosclerosis (AS) progression remains unclear. Human peripheral blood neutrophils were obtained to compare toll-like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin (IL)-1β and myeloid-related proteins 8/14 (Mrp8/14) levels in 22 AS patients with those in 18 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Meanwhile, mouse marrow neutrophils subjected to different treatment were collected for the ELISA assay, cell apoptosis, and Western blot analysis. Normal diet or high-fat diet ApoE−/− mice with or without administration of Mrp8/14 antagonist paquinimod were used for plasma collection to measure total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, TNF-α, IL-1β, Mrp8/14, TLR4, and nuclear factor (NF)-κB p65 levels. The results showed that Mrp8/14 and TLR4-mediated inflammatory pathway was activated in neutrophils of AS patients. In vitro experiments demonstrated that platelet-neutrophil interaction promoted the Mrp8/14 release and inhibited neutrophil apoptosis via P-selectin. Furthermore, platelet-neutrophil interaction upregulated TLR4/myeloid differentiation factor 88/NF-κB pathway. Conversely, Mrp8/14/TLR4/NF-κB interference alleviated AS progression. In conclusion, Mrp8/14/TLR4/NF-κB activated by platelet-neutrophil interaction is an important inflammatory signaling pathway for AS pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号