首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavobacterium psychrophilum (F. psychrophilum) is the causative agent of bacterial cold-water disease (BCWD) that occurs in ayu Plecoglossus altivelis. Formalin-killed cell of F. psychrophilum has long been studied as an immersion vaccine for BCWD. In this study, we explored the possibility of F. psychrophilum collagenase (fpcol) for use as the immersion vaccine. BCWD convalescent ayu sera contained specific IgM antibodies against somatic F. psychrophilum and fpcol, meaning that fpcol is a promising antigen for the vaccine development. The recombinant fpcol was successfully expressed in Escherichia coli and Brevibacillus chosinensis (B. chosinensis). The culture supernatant of the B. chosinensis was used as an immersion vaccine solution. The vaccinated ayu were then challenged by soaking into F. psychrophilum culture. In two experimental groups, the relative percentages of survivals were 63 and 38%, respectively, suggesting that fpcol is promising as the immersion vaccine for ayu-BCWD.  相似文献   

2.
Bacterial blight caused by Xanthomonas campestris pv. punicae (Xcp) has emerged as a potential threat in pomegranate (Punica granatum) cultivation in India. Here, we report the genomic fingerprints and their correlation with virulence pattern of Xcp isolates from Maharashtra and Delhi. The genomic fingerprints of Xcp isolates were generated using enterobacterial repetitive intergenic consensus (ERIC) sequence-based primers, and virulence level was based on their reaction upon infiltration to susceptible pomegranate cultivar. Maharashtra isolate PGM1 showed only 50% similarity with Delhi isolate PGD8 forming a distinct genotype, whereas the Delhi isolates PGD5 and PGD6 form a cluster with Maharashtra isolates PGM2 and PGM4. The isolates PGM2, PGM4, PGD5, and PGD6 showing mean disease score of 7.47 were marked as group A or highly virulent. The moderately virulent or group B isolates PGM3 and PGD7 produced mean disease score of 4.19, whereas less virulent or group C isolates PGD8 and PGM1 gave mean disease intensity of 1.91. A correlation between genotypic groups based on ERIC fingerprints and pathogenicity of the isolates was established. The highly virulent isolates PGM2, PGM4, PGD5, and PGD6 formed a single cluster. A unique 900 bp amplicon present in all highly virulent isolates has been identified that can be used as genetic marker to screen isolates for virulence. The less virulent isolates PGD8 and PGM1 formed single cluster at 50% similarity coefficient. This seems to be the first report to establish a correlation between ERIC-PCR fingerprints and their corresponding virulence pattern of the pomegranate bacterial blight pathogen.  相似文献   

3.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil borne disease of guava in India. Forty-two isolates, each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs), collected from different agro climatic zones of India showing pathogenicity were subjected to estimate their virulence factor in terms of analysis using virulent gene-related microsatellite loci. The erratic spread and occurrence of guava wilt in different areas may be due to variable aggressiveness or virulence of different pathogenic isolates in the soil. Out of 10 virulent gene locus related microsatellite markers ofFusarium spp., only six marker viz. Xyl, KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were successfully amplified. This indicates that all the tested Fusarium sp. isolates of guava are having virulence gene in their genome. Microsatellite marker for virulence factor genes of Xyl loci was amplified in both Fop and Fs isolates. Product size of 281 bps was exactly amplified with a single banding pattern in all the isolates of Fop and Fs. It has been observed that other five microsatellite marker for virulence factor genes such as KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were amplified with specific band pattern. PG6/7, CHS1/2 and FMK1/MAPK1 were only amplified in Fop isolates with a product size of 765 bps, 1566 bps; 1010 bps and 1244 bps. PelA1 and KHS1were amplified only in Fs isolates with the product size of 586 bps; 1359 bps, respectively. The results indicate that virulence factor genes are in response to produce wilt disease like symptoms in guava plants and also having pathogenic gene-related locus.  相似文献   

4.
Didymella bryoniae, isolate 98–18, recovered from watermelon seedlings with symptoms of gummy stem blight, showed abnormal growth, mycelial lysis, sectoring, barrage and limited production of fruiting bodies in culture. A dsRNA (approximately 6.5 kbp) was associated with isolate 98–18 and other isolates showing abnormal mycelial growth. Transfer of dsRNA from 98–18 to virulent isolates Tk659 and TK671 via hyphal anastamosis was achieved only by consecutive exposure to 98–18, but not to virulent isolates RJ1 and RJ2. Transfer of dsRNA via infiltration through growth media to virulent isolates RJ1, RJ2, TK659 and TK671 was unsuccessful. The disease severity index of isolate 98–18 was reduced 53% on watermelon, 32% on cataloupe and 26% on yellow squash compared with isolate RJ2, suggesting that the presence of the dsRNA is associated with reduced virulence of D. bryoniae isolate 98–18. Zucchini and yellow squash were resistant to both isolates when tested.  相似文献   

5.
One of the economically important diseases of onion is the basal rot caused by various Fusarium species. Identification of the pathogenic species prevalent in a region is indispensable for designing management strategies, especially to develop resistant cultivars. Eighty Fusarium isolates are obtained from red onion bulbs on infected fields of East Azarbaijan province. Inoculating the onion bulbs with 38 selective isolates indicated that 17 isolates were pathogenic on onion. According to the morphological and molecular characteristics, these isolates were identified as F. oxysporum, F. solani, F. proliferatum and F. redolens. This is the first report of F. redolens on onion in Iran. On the other hand, the virulence of each pathogenic isolate was evaluated on onion bulbs and seedlings. F. oxysporum which causes severe rot and damping-off was considered as a highly virulent species in both conditions. While, F. proliferatum was considered as the most destructive on onion bulbs. Rot ability of F. solani was not considerable, and only the 4S isolate caused pre- and post-emergence damping-off more than 50%. Finally, F. redolens with less pathogenicity on onion bulbs was identified as the most virulent isolate on onion seedlings, which was explanatory of its importance on farm.  相似文献   

6.
The aim of our study was to investigate differences that might exist in the activation of the human complement system by F1 fractions from four different isolates of P. brasiliensis. Isolates HC and 18 (virulent), 265 (low virulence), and 9 (intermediate virulence, attenuated) were used; before the experiments, the virulence of isolates HC and 18 was recovered by in vivo passage in guinea pigs. The four isolates of the fungus were processed for purification of F1 fractions and the activation of the human complement system was studied by a kinetic method of hemolytic activity measurement. The incubation of F1 fractions in normal human serum resulted in different degrees of inhibition of the classical and alternative pathways. The F1 fraction from the low virulence isolate was more efficient than the F1 fraction from the virulent isolates (HC and 18). Previous absorption of sera with F1 fractions completely abolished classical pathway activation. Using zymosan, instead of F1, in the absorption process caused the same phenomenon, suggesting that natural or nonspecific antibodies are responsible for the classical pathway activation. The alternative pathway activation did not depend on these antibodies, but was enhanced by their presence. On the other hand, F1 fractions from virulent isolates were more active in the stimulation of neutrophil chemiluminescence compared with the F1 fraction from the low virulence isolate. Whole P. brasiliensis yeast cells (WYC) from two distinct strains, 18 and 265, showed the same patterns of response of those observed with the F1 fractions in the functions tested. These differences in the behavior of the F1 fractions as well as WYC in relation to human complement activation and consequently to neutrophil stimulation may correlate with the virulence of individual isolates and may contribute to the understanding of the inflammatory response generation and maintenance processes in paracoccidioidomycosis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The reproduction of single egg-mass isolates of Meloidogyne javanica from Crete that differed in virulence were compared on tomato (Lycopersicon esculentum) genotypes homozygous or heterozygous for the Mi gene. The reproduction of three isolates with partial virulence was much greater on tomato genotypes heterozygous for the Mi gene (cultivars Scala, Bermuda, and 7353) than on two homozygous genotypes (F8 inbred lines derived from Scala). The reproduction of a highly virulent isolate on the homozygous and heterozygous genotypes was similar to that on a susceptible cultivar. These results pose questions regarding the nature of partial virulence and indicate a quantitative effect of the Mi gene in relation to such virulence.  相似文献   

8.
Isofemale lines (IFL) from single egg masses were studied for genetic variation in Meloidogyne incognita isolates avirulent and virulent to the resistance gene Rk in cowpea (Vigna unguiculata). In parental isolates cultured on susceptible and resistant cowpea, the virulent isolate contained 100% and the avirulent isolate 7% virulent lineages. Virulence was selected from the avirulent isolate within eight generations on resistant cowpea (lineage selection). In addition, virulence was selected from avirulent females (individual selection). Virulence differed (P ≤ 0.05) both within and between cohorts of IFL cultured for up to 27 generations on susceptible or resistant cowpea. Distinct virulence profiles were observed among IFL. Some remained avirulent on susceptible plants and became extinct on resistant plants; some remained virulent on resistant and susceptible plants; some changed from avirulent to virulent on resistant plants; and others changed from virulent to avirulent on susceptible plants. Also, some IFL increased in virulence on susceptible plants. Single descent lines from IFL showed similar patterns of virulence for up to six generations. These results revealed considerable genetic variation in virulence in a mitotic parthenogenetic nematode population. The frequencies of lineages with stable or changeable virulence and avirulence phenotypes determined the overall virulence potential of the population.  相似文献   

9.
The virulence index of three Meloidogyne incognita field isolates to the resistance gene Rk in cowpea was 0%, 75%, and 120%, with the index measured as reproduction on resistant plants as a percentage of the reproduction on susceptible plants. Continuous culture of the 75% virulent isolate on susceptible tomato for more than 5 years (about 25 generations) resulted in virulence decline to about 4%. The rate of the decline in virulence was described by exponential decay, indicating the progressive loss of virulence on a susceptible host. The 120% virulent isolate declined to 90% virulence during five generations on susceptible cowpea. Following virulence decline, the two isolates were compared over 5 years in inoculated field microplots both separately and as a mixture on susceptible, gene Rk, and gene Rk2 cowpea plants. At infestation of the plots, the two isolates were 1.2% and 92.0% virulent, respectively, to gene Rk and 0.2% and 8.1% virulent, respectively, to gene Rk2. Virulence to gene Rk in the two isolates and in mixture increased under 5 years of continuous Rk cowpea plants to 129% to 172% and under Rk2 cowpea plants to 113% to 139 % by year 5. Virulence to gene Rk2 increased during continuous cropping with Rk cowpea plants to 42% to 47% and with Rk2 cowpea plants to 22% to 48% by year 5. Selection of Rk2-virulence was slower in the isolate with low itt-virulence. The virulence to both genes Rk and Rk2 in the mixed population was not different from that in the highly virulent isolate by year 5 of all cropping combinations. Selection of Rk2-virulence on plants with Rk, and vice versa, indicated at least partial overlap of gene specificity between Rk and Rk2 with respect to selection of nematode virulence. This observation should be considered when resistance is used in cowpea rotations.  相似文献   

10.
M. Reuveni    N. Sheglov    D. Eshel    D. Prusky    R. Ben-Arie   《Journal of Phytopathology》2007,155(1):50-55
Alternaria alternata, is the predominant fungal pathogen responsible for moldy‐core in apple cultivars of the Red Delicious group. Here we report on the association between virulence of natural isolates of A. alternata, their production of endo‐1,4‐β‐glucanase (EG) and moldy‐core development in apple fruits. Based on decay development following wound inoculations of mature fruits, three of 150 isolates, collected in three orchards in northern Israel and representing low, moderate and high virulence, were selected and designated Rm44, Er30 and Sh42, respectively. All three isolates secreted EG when grown on enzyme‐inducing medium (EIM) containing commercial cellulose or apple cell walls and this production was related to their degree of virulence. Polyacrylamide gel electrophoresis (PAGE) revealed quantitative differences between the three isolates, relative to their virulence. When fungal extracts were run in native gels, a single band with a molecular mass of 23 kDa showing EG activity was produced by the high‐ (Sh42) and the medium‐virulence (Er30) isolate but not by the low‐virulence (Rm44) isolate. A commercial cellulase preparation (containing endo‐ and exo‐1,4‐β‐glucanase) placed on pricked fruit led to the formation of symptoms similar to those developing on A. alternata‐inoculated fruits within 2–4 days. Inoculation of bloom clusters at full bloom with the highly virulent isolate (Sh42) of A. alternata resulted in a significantly higher infection in fruits (58%) than in those inoculated with the low‐virulence isolate (Rm44) (30%). Our results suggest that the moldy‐core symptoms caused by A. alternata in apple, could be related to the ability of the fungus to produce EG in developing lesions.  相似文献   

11.
Flavobacterium psychrophilum is the causative agent of bacterial cold water disease (BCWD), which affects a variety of freshwater-reared salmonid species. A large-scale study was performed to investigate the genetic diversity of F. psychrophilum in the four Nordic countries: Denmark, Finland, Norway, and Sweden. Multilocus sequence typing of 560 geographically and temporally disparate F. psychrophilum isolates collected from various sources between 1983 and 2012 revealed 81 different sequence types (STs) belonging to 12 clonal complexes (CCs) and 30 singleton STs. The largest CC, CC-ST10, which represented almost exclusively isolates from rainbow trout and included the most predominant genotype, ST2, comprised 65% of all isolates examined. In Norway, with a shorter history (<10 years) of BCWD in rainbow trout, ST2 was the only isolated CC-ST10 genotype, suggesting a recent introduction of an epidemic clone. The study identified five additional CCs shared between countries and five country-specific CCs, some with apparent host specificity. Almost 80% of the singleton STs were isolated from non-rainbow trout species or the environment. The present study reveals a simultaneous presence of genetically distinct CCs in the Nordic countries and points out specific F. psychrophilum STs posing a threat to the salmonid production. The study provides a significant contribution toward mapping the genetic diversity of F. psychrophilum globally and support for the existence of an epidemic population structure where recombination is a significant driver in F. psychrophilum evolution. Evidence indicating dissemination of a putatively virulent clonal complex (CC-ST10) with commercial movement of fish or fish products is strengthened.  相似文献   

12.
Current methods for take-all assessment in laboratory experiment were examined; it was shown that the extent of vascular discoloration may not reflect virulence of a fungal isolate or host resistance to the pathogen under some experimental conditions. A new assessment method for take-all is described, based on the ability of transport eosin past infection sites. It enables hosts or isolates to be compared by ET50 values, the times from inoculation when 50% of plants fail in eosin-uptake through the three oldest seminal roots. Use of this technique suggested that barley roots were less affected than were wheat roots by Gaeumannomyces graminis var. tritici. Further experimental results showed that an isolate of G. graminis that had lost part of its virulence in culture yielded some single-conidium progeny more virulent than itself. When single-condium isolates or a mycelial isolate and its single-conidium progeny were jointly inoculated on wheat, the amount of disease was less than that caused by the more virulent isolate alone.  相似文献   

13.
Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259–93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and phenotypic properties may provide new insights to the mechanisms of pathogenicity in F. psychrophilum.  相似文献   

14.
Flavobacterium psychrophilum is an important fish pathogen in salmonid aquaculture worldwide. Due to increased antibiotic resistance, pathogen control using bacteriophages has been explored as a possible alternative treatment. However, the effective use of bacteriophages in pathogen control requires overcoming the selection for phage resistance in the bacterial populations. Here, we analyzed resistance mechanisms in F. psychrophilum after phage exposure using whole-genome sequencing of the ancestral phage-sensitive strain 950106-1/1 and six phage-resistant isolates. The phage-resistant strains had all obtained unique insertions and/or deletions and point mutations distributed among intergenic and genic regions. Mutations in genes related to cell surface properties, gliding motility, and biosynthesis of lipopolysaccharides and cell wall were found. The observed links between phage resistance and the genetic modifications were supported by direct measurements of bacteriophage adsorption rates, biofilm formation, and secretion of extracellular enzymes, which were all impaired in the resistant strains, probably due to superficial structural changes. The clustered regularly interspaced short palindromic repeat (CRISPR) region was unaffected in the resistant isolates and thus did not play a role as a resistance mechanism for F. psychrophilum under the current conditions. All together, the results suggest that resistance in F. psychrophilum was driven by spontaneous mutations, which were associated with a number of derived effects on the physiological properties of the pathogen, including reduced virulence under in vitro conditions. Consequently, phage-driven physiological changes associated with resistance may have implications for the impact of the pathogen in aquaculture, and these effects of phage resistance on host properties are therefore important for the ongoing exploration of phage-based control of F. psychrophilum.  相似文献   

15.
Eighteen isolates of the entomopathogenic fungus Verticillium lecanii from various world-wide locations, from insect hosts and soil were bioassayed against the aphid Macrosiphoniella sanborni in the laboratory. Virulence ranged from an isolate which achieved 100% mortality and LT 50 value (adults) of 3 days ± 0· 2 at 24 ° C, compared with the least virulent isolates causing less than 10% mortality over 14 days (when treated with an inoculum of 1 × 106 conidiospores/ml). All isolates produced extracellular protease and lipase, irrespective of their virulence. A number of traits were frequently associated with the expression of virulence including fast germination, high sporulation rate, an absence of extracellular amylase activity and high extracellular chitinase activities. Large spore size was not strongly associated with virulence. There were exceptions in each variate studied, suggesting that overall expression of virulence is a result of the total complex of these and other traits still to be determined.  相似文献   

16.
Some morphological and physiological characteristics of an Isaria fumosorosea isolate with diminished virulence, IFCF01-D, and its parent isolate, IFCF01, were evaluated and laboratory bioassays were performed to assess their virulence against Plutella xylostella. The relationship among these traits and virulence against P. xylostella is discussed. There were no significant differences in conidial viability, spore production and the time required for 50% germination (GT50). Spore viability after incubation for 24 h at 25°C was greater than 98% for both isolates tested. Spore production on potato dextrose agar after 14 days incubation at 25°C was 4.68 × 108 and 4.59 × 108 conidia/mL for IFCF01 and IFCF01-D, respectively. When exposed to high temperatures (40, 45, 50 or 55°C) through a water bath for 10 min, conidial germination ranged from 0.83% to 84.0% for IFCF01 and 0% to 86% for IFCF01-D. Germination rate showed a negative relationship with the exposure temperature for both isolates. The per cent germination of isolate IFCF01 24 h after ultraviolet (UV) radiation (18 W, 240–260 nm) varied from 0% to 92% and 0% to 81% for IFCF01-D. Germination rate and the exposure time exhibited a negative correlation for both isolates tested. Conidial surface hydrophobicity of IFCF01 (60%) was significantly higher than that of isolate IFCF01-D (53%). Subsequently, using the cicada exuviae as the substrate for enzymatic analysis, Pr1 and chitinase activity demonstrated the contrasting virulence traits: higher specific activities for the more virulent IFCF01 and lower enzymatic levels for isolate IFCF01-D.  相似文献   

17.
Brassica napus (canola) is an important oilseed crop in many countries throughout the world including Canada. One of the major constraints on canola productivity is blackspot disease caused by the necrotrophic phytopathogenic fungus Alternaria brassicae. Two isolates of A. brassicae with significant differences in virulence have been characterized at the proteomelevel. The morphological observations indicated the Ontario isolate to be more virulent by virtue of increased disease severity score as compared to the UAMH7476 isolate. This was further confirmed through histological observations that indicated extensive colonization of the host tissue by the highly virulent isolate. Mycelial protein profiles of two differentially virulent A. brassicae isolates were compared using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) in order to identify proteins that may be responsible for the observed differences. The investigation suggested several differences in the mycelial proteomes of the two isolates. The proteins that were significantly abundant in the more virulent isolate included a protein with conserved actin related protein 2/3 domain, enolase, malate dehydrogenase and serine protease. These results suggest that the differential protein expression pattern could be exploited to identify putative virulence and pathogenicity factors in A. brassicae.  相似文献   

18.
The variability in cultural characteristics and the virulence among three isolates of Fusarium oxysporum f. sp. ciceri causing vascular wilt in chickpea was studied under laboratory conditions. The three isolates (Foc-1, Foc-2 and Foc-3) did not show any significant difference in their mycelial dry weight production at any temperature regimes, pH level or the growth media tested. The radial growth on PDA also did not differ significantly in the three isolates. However, some quantitative differences were noted in colony characters and septations in macroconidia of these isolates. The isolate Foc-1 exhibited dull white, thin and flat hairy growth, spreading out like thread, Foc-2 showed a white fluffy colony with irregular aerial margin, while Foc-3 exhibited a pinkish white, slightly fluffy colony with regular margin. Conidia also differed with regard to septation. Three to six septa were present in Foc-2, while there were 2–3 in isolates Foc-1 and Foc-2. These isolates differed significantly with regard to their virulence on test varieties. Isolate Foc-1 was more virulent that Foc-2 or Foc-3 and produced abundant spores.  相似文献   

19.
MA Jun 《Insect Science》2000,7(1):53-57
Abstract Five isolates of Metarhizium anisopliae and one isolate of Nomuraea rileyi were bioassayed against larvae of Plutella xylostella. Larvae were treated by exposing cabbage leaf discs previously immersed in conidial suspension, and were then incubated at 25oC and observed daily. One of M. anisopliae isolates, F11248, originally from Mastotermes darwiniensis was found being most virulent against P. xylostella. The LC50 was estimated as 2.03 times 104conidia/ml with 9 d mortality data, and the LT50 was 4.97 d at concentration of 107conidia/ml. Isolate F163 (N. rileyi) showed virulence to P. xylostella in both tests, but no cadavers sporulated.  相似文献   

20.
Two isolates of Cryptococcus neoformans were previously described as being highly divergent in their level of capsule synthesis in vivo and in their virulence for mice. The highly virulent isolate (NU-2) produced more capsule than a weakly virulent isolate (184A) in vitro under tissue culture conditions and in vivo. This investigation was done to determine if there were differences between the two isolates in other factors that might also contribute to virulence. Growth rate was not a factor as NU-2 grew more slowly than 184A. Based on PCR fingerprinting the two isolates were genetically different providing an opportunity to examine differences in multiple virulence traits. Quantitative analysis revealed that NU-2 expressed significantly more melanin and mannitol than did 184A. Although the isolates expressed the same capsular chemotype, NU-2 produced an additional structure reporter group (SRG)under tissue culture conditions that was not present when grown in glucose salts/urea/basal medium (GSU).Capsular polysaccharide SRGs of 184A were unaffected by shifting the growth conditions from GSU to tissue culture conditions. Our results suggest that pathogenesis of a C. neoformans strain is dictated by the quantitative expression of the strain's combined virulence traits. Regulators of the expression of these genes may be playing key roles in virulence.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号