首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structures of the binding between human immunodeficiency virus-1 protease (HIV-1PR) and various inhibitors including existing extensive natural products extracts have been investigated for anti-HIV drug development. In this study, the binding of HIV-1PR and a terpenoid from Litchi chinensis extracts (3-oxotrirucalla-7,24-dien-21-oic acid) was investigated in order to clarify the inhibition effectiveness of this compound. Molecular dynamics (MD) simulations of HIV-1PR complex with 3-oxotrirucalla-7,24-dien-21-oic acid were performed including water molecules. The MD simulation results indicated the formation of hydrogen bonds between the oxygen atoms of the inhibitor and the catalytic aspartates, which are commonly found in inhibitors–protease complexes. On the other hand, no hydrogen bonding of this particular inhibitor to the flap region was found. In addition, the radial distribution function of water oxygens around the catalytic carboxylate nitrogens of Asp29 and Asp30 suggests that at least one or two water molecules are in the active site region whereas direct interaction of the inhibitor was found for catalytic carboxylate oxygen of Asp25. The results of this simulation, in comparison with the structures of other HIV-PR inhibitor complexes, could lead to a better understanding of the activity of 3-oxotrirucalla-7,24-dien-21-oic acid.  相似文献   

2.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

3.
4.
Protease inhibitors (PIs) are crucial drugs in highly active antiretroviral therapy for human immunodeficiency virus-1 (HIV-1) infections. However, resistance owing to mutations challenge the long-term efficacy in the medication of HIV-1-infected individuals. Lopinavir (LPV) and darunavir (DRV), two second-generation drugs are the most potent among PIs, hustling the drug resistance when mutations occur in the active and nonactive site of the protease (PR). Herein, we strive for compounds that can stifle the function of wild-type (WT) HIV-1 PR along with four major single mutants (I54M, V82T, I84V, and L90M) instigating resistance to the PIs using in silico approach. Six common compounds are retrieved from six databases using combined pharmacophore-based and structure-based virtual screening methodology. LPV and DRV are docked and the binding free energy is calculated to set the cut-off value for selecting compounds. Further, to gain insight into the stability of the complexes the molecular dynamics simulation (MDS) is carried out, which uncovers two lead molecules namely NCI-524545 and ZINC12866729. Both the lead molecules connect with WT and mutant HIV-1 PRs through strong and stable hydrogen bond interactions when compared with LPV and DRV throughout the trajectory analysis. Interestingly, NCI-524545 and ZINC12866729 exhibit direct interactions with I50/50′ by replacing the conserved water molecule as evidenced by MDS, which indicates the credible potency of these compounds. Hence, we concluded that NCI-524545 and ZINC12866729 have great puissant to restrain the role of drug resistance HIV-1 PR variants, which can also show better activity through in vivo and in vitro conditions.  相似文献   

5.
Molecular dynamics simulations were performed to evaluate the origin of the antimalarial effect of the lead compound P218. The simulations of the ligand in the cavities of wild-type, mutant Plasmodium falciparum Dihydrofolate Reductase (PfDHFR) and the human DHFR revealed the differences in the atomic-level interactions and also provided explanation for the specificity of this ligand toward PfDHFR. The binding free energy estimation using Molecular Mechanics Poisson-Boltzmann Surface Area method revealed that P218 has higher binding affinity (~ ?30 to ?35 kcal/mol) toward PfDHFR (both in wild-type and mutant forms) than human DHFR (~ ?22 kcal/mol), corroborating the experimental observations. Intermolecular hydrogen bonding analysis of the trajectories showed that P218 formed two stable hydrogen bonds with human DHFR (Ile7 and Glu30), wild-type and double-mutant PfDHFR’s (Asp54 and Arg122), while it formed three stable hydrogen bonds with quadruple-mutant PfDHFR (Asp54, Arg59, and Arg122). Additionally, P218 binding in PfDHFR is stabilized by hydrogen bonds with residues Ile14 and Ile164. It was found that mutant residues do not reduce the binding affinity of P218 to PfDHFR, in contrast, Cys59Arg mutation strongly favors inhibitor binding to quadruple-mutant PfDHFR. The atomistic-level details explored in this work will be highly useful for the design of non-resistant novel PfDHFR inhibitors as antimalarial agents.  相似文献   

6.
We report the synthesis and biological evaluation of a new series of 3- or 4-(substituted)phenylisoxazolones as HNE inhibitors. Due to tautomerism of the isoxazolone nucleus, two isomers were obtained as final compounds (2-NCO and 5-OCO) and the 2-NCO derivatives were the most potent with IC50 values in the nanomolar range (20–70?nM). Kinetic experiments indicated that 2-NCO 7d and 5-OCO 8d are both competitive HNE inhibitors. Molecular modelling on 7d and 8d suggests for the latter a more crowded region about the site of the nucleophilic attack, which could explain its lowered activity. In addition molecular dynamics (MD) simulations showed that the isomer 8d appears more prone to form H-bond interactions which, however, keep the reactive sites quite distant for the attack by Ser195. By contrast the amide 7d appears more mobile within the active pocket, since it makes single H-bond interactions affording a favourable orientation for the nucleophilic attack.  相似文献   

7.
Abstract

In this study, newly synthesised compounds 6, 8, 10 and other compounds (1–5, 7 and 9) and their inhibitory properties against the human isoforms hCA I and hCA II were reported for the first time. Compounds 1–10 showed effective inhibition profiles with K I values in the range of 5.13–16.9?nM for hCA I and of 11.77–67.39?nM against hCA II, respectively. Molecular docking studies were also performed with Glide XP to get insight into the inhibitory activity and to evaluate the binding modes of the synthesised compounds to hCA I and II. More rigorous binding energy calculations using MM-GBSA protocol which agreed well with observed activities were then performed to improve the docking scores. Results of in silico calculations showed that all compounds obey drug likeness properties. The new compounds reported here might be promising lead compounds for the development of new potent inhibitors as alternatives to classical hCA inhibitors.  相似文献   

8.
Microbial resistance to the available drugs poses a serious threat in modern medicine. We report the design, synthesis and in vitro antimicrobial evaluation of new functionalized 2,3-dihydrothiazoles and 4-thiazolidinones tagged with sulfisoxazole moiety. Compound 8d was most active against Bacillis subtilis (MIC, 0.007?µg/mL). Moreover, compounds 7cd and 8c displayed significant activities against B. subtilis and Streptococcus pneumoniae (MIC, 0.03–0.06?µg/mL and 0.06–0.12?µg/mL versus ampicillin 0.24?µg/mL and 0.12?µg/mL; respectively). Compounds 7a and 7cd were highly potent against Escherichia coli (MIC, 0.49–0.98?µg/mL versus gentamycin 1.95?µg/mL). On the other hand, compounds 7e and 9c were fourfolds more active than amphotericin B against Syncephalastrum racemosum. Molecular docking studies showed that the synthesized compounds could act as inhibitors for the dihydropteroate synthase enzyme (DHPS). This study is a platform for the future design of more potent antimicrobial agents.  相似文献   

9.
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson–Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase–ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.  相似文献   

10.
In spite of various research investigations towards anti-depressant drug discovery program, no one drug has not yet launched last 20 years. Corticotropin-releasing factor-1 (CRF-1) is one of the most validated targets for the development of antagonists against depression, anxiety and post-traumatic stress disorders. Various research studies suggest that pyrazinone based CRF-1 receptor antagonists were found to be highly potent and efficacious. In this research investigation, we identified the pharmacophore and binding pattern through 2D and 3D-QSAR and molecular docking respectively. Molecular dynamics studies were also performed to explore the binding pattern recognition. We establish the relationship between activity and pharmacophoric features to design new potent compounds. The best 2D-QSAR model was generated through multiple linear regression method with r2 value of 0.97 and q2 value of 0.89. Also 3D-QSAR model was obtained through k-nearest neighbor molecular field analysis method with q2 value of 0.52 and q2_se value of 0.36. Molecular docking and binding energy were also evaluated to define binding patterns and pharmacophoric groups, including (i) hydrogen bond with residue Asp284, Glu305 and (ii) π–π stacking with residue Trp9. Compound 11i has the highest binding affinity compared to reference compounds, so this compound could be a potent drug for stress related disorders. Most of the compounds, including reference compounds were found within acceptable range of physicochemical parameters. These observations could be provided the leads for the design and optimization of novel CRF-1 receptor antagonists.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
12.
Abstract

Benzodipyrazoles have been previously evaluated for their in vitro CDK2 inhibitory activity. In the current investigation, we identified a six-feature common pharmacophore model (AADDRR.33) which is predicted to be responsible for CDK2 inhibition. An efficient 3D QSAR (r2?=?0.98 and q2?=?0.82) model was also constructed by employing PLS regression analysis. From the molecular docking studies, we examined the binding patterns of compound 7aa with the target protein and also calculated the binding energy using MM-GBSA calculations. Three hydrogen bonds with Lys 33, Glu 81, and Leu 83 are conserved even after 1000?ps run in a molecular dynamics simulation. We identified the slight displacement in bond lengths and the conformational changes occurred during the dynamics. The results also elucidated the protein residue–ligand interaction fractions which clearly explained the involvement of non-H-bond interactions.  相似文献   

13.
The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy. Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the C-SA PR was resolved at 2.7?Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility of the flaps which may be associated with reduced susceptibility to PIs.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36  相似文献   

14.
HIV-1 envelope glycoprotein transmembrane subunit gp41 play a critical role in the fusion of viral and target cell membranes. The gp41 C-terminal heptad repeat region interacts with the N-terminal coiled-coil region to form a six-stranded core structure. Peptides derived from gp41 C-terminal heptad repeat region (C-peptides) are potent HIV-1 entry inhibitors by binding to gp41 N-terminal coiled-coil region. Most recently, we have identified two small organic compounds that inhibit HIV-1-mediated membrane fusion by blocking the formation of gp41 core. These two active compounds contain both hydrophobic and acidic groups while the inactive compounds only have hydrophobic groups. Analysis by computer modeling indicate that the acidic groups in the active compounds can form salt bridge with Lys 574 in the N-terminal coiled-coil region of gp41. Asp 632 in a C-peptide can also form a salt bridge with Lys 574. Replacement of Asp 632 with positively charged residues or hydrophobic residues resulted in significant decrease of HIV-1 inhibitory activity. These results suggest that a salt bridge between an N-terminal coiled coil of the gp41 and an antiviral agent targeted to the gp41 core is important for anti-HIV-1 activity.  相似文献   

15.
Khelline is naturally occurring furochromone exhibited significant Epidermal Growth Factor Receptor (EGFR) inhibitory activity. The newly synthesized compounds 2–5 displayed the most potent EGFR inhibitory activity on MCF-7 and HeLa. In vitro study against 59 different human tumour cell lines derived from nine cancer type in NCI (USA), which was presented and documented. Molecular docking simulation was performed to position compounds 15 into the EGFR active site to determine the probable binding mode.  相似文献   

16.
Reactive oxygen species (ROS) play an integral role in the pathogenesis of most diseases. This work presents the design and synthesis of novel 2-phenylquinazolin-4-amine derivatives (212) and evaluation of their NAD(P)H:quinone oxidoreductase 1 (NQO1) inducer activity in murine cells. Also, molecular docking of all the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain which biologically leads to a consequent Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds have the ability to interact with Keap1; however compound 7, the most active compound in this study, showed more interactions with key amino acids.  相似文献   

17.
A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8?b selectively inhibited the COX-2 enzyme (IC50?=?~0.20–0.69?μM), with SI values of (>72.5–250) compared with celecoxib (IC50?=?0.16?μM, COX-2 SI:?>?312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50?>?50?μM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10?μM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition?=?~0–10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.  相似文献   

18.
The design, synthesis, and biological evaluation of a series of six HIV-1 protease inhibitors incorporating isosorbide moiety as novel P2 ligands are described. All the compounds are very potent HIV-1 protease inhibitors with IC50 values in the nanomolar or picomolar ranges (0.05–0.43 nM). Molecular docking studies revealed the formation of an extensive hydrogen-bonding network between the inhibitor and the active site. Particularly, the isosorbide-derived P2 ligand is involved in strong hydrogen bonding interactions with the backbone atoms.  相似文献   

19.
Herein, the binding of 1-methyl-3-octylimidazolium chloride [OMIM][Cl] ionic liquid with hen egg white lysozyme (HEWL) has been studied using fluorescence, time resolved fluorescence, UV–visible and circular dichroism (CD) spectroscopy, in combination with computational study. The fluorescence results revealed that [OMIM][Cl] quenches the fluorophore of HEWL through static quenching mechanism. The calculated thermodynamic parameters show that [OMIM][Cl] bind with HEWL through hydrophobic interactions. In addition, the negative value of Gibbs energy change (?G) indicates that the binding process was spontaneous. Furthermore, UV–vis and CD results indicate that [OMIM][Cl] induce the conformational change in HEWL and increase its enzymatic activity. Additionally, molecular docking results showed that [OMIM][Cl] binds at the active site of HEWL where both the fluorophore residues (Trp108 and Trp62) and the catalytic residues (Glu35 and Asp52) reside. Molecular dynamic simulation results show the reduction of intra-molecular hydrogen bond of HEWL when it binds with [OMIM][Cl].  相似文献   

20.
Benzothiazepines 1–3 inhibited acetylcholinesterase (AChE; EC 3.1.1.7) enzyme in a concentration-dependent fashion with IC50 values of 1.0 ± 0.002, 1.2 ± 0.005 and 1.3 ± 0.001 μM, respectively. By using linear-regression equations, Lineweaver-Burk, Dixon plots and their secondary replots were constructed which indicated that compounds 1–3 are non-competitive inhibitors of AChE with Ki values of 0.8 ± 0.04, 1.1 ± 0.002, and 1.5 ± 0.001 μM, respectively. Molecular docking studies revealed that all the compounds are completely buried inside the aromatic gorge of AChE, extending deep into the gorge of AChE. A comparison of the docking results of compounds 1–3 displayed that these compounds generally adopt the same binding mode in the active site of AChE. The superposition of the docked structures demonstrated that the non-flexible benzothiazepine always penetrate into the aromatic gorge through the six-membered ring A, which allowed the ligands to interact simultaneously with more than one subsites of the active center of AChE. The higher AChE inhibitory potential of compounds 1–3 was found to be the cumulative effect of hydrophobic contacts and π-π interactions between the ligands and AChE. The relatively high affinity of benzothiazepine 1 with AChE was found to be due to additional hydrogen bond in benzothiazepine 1-AChE complex. The results indicated that substitution of halogen and methyl groups by hydrogen at aromatic ring of the benzothiazepine decreased the affinity of these molecules towards enzyme that may be due to the polar non-polar repulsions of these moieties with the amino acid residues in the active site of AChE. The observed binding modes of benzothiazepines 1–3 in the active site of AChE explain the affinities of benzothiazepines and provide a rational basis for the structure-based drug design of benzothiazepines with improved pharmacological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号