首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Tetrathionate hydrolase (4THase), a key enzyme of the S4-intermediate (S4I) pathway, was partially purified from marine acidophilic bacterium, Acidithiobacillus thiooxidans strain SH, and the gene encoding this enzyme (SH-tth) was identified. SH-Tth is a homodimer with a molecular mass of 97 ± 3 kDa, and contains a subunit 52 kDa in size. Enzyme activity was stimulated in the presence of 1 M NaCl, and showed the maximum at pH 3.0. Although 4THases from A. thiooxidans and the closely related Acidithiobacillus caldus strain have been reported to be periplasmic enzymes, SH-Tth seems to be localized on the outer membrane of the cell, and acts as a peripheral protein. Furthermore, both 4THase activity and SH-Tth proteins were detected in sulfur-grown cells of strain SH. These results suggested that SH-Tth is involved in elemental sulfur-oxidation, which is distinct from sulfur-oxidation in other sulfur-oxidizing strains such as A. thiooxidans and A. caldus.  相似文献   

2.
Two enzymes containing thiosulfate sulfur transferase activity were purified fromChlorobium vibrioforme f.thiosulfatophilum by ion exchange chromatography, gel filtration and isoelectrofocusing. Enzyme I is a basic protein with an isoelectric point at pH 9.2 and has a molecular weight of 39,000. TheK m-values for thiosulfate and cyanide of the purified basic protein were 0.25 mM (thiosulfate) and 5 mM (cyanide). Enzyme II is an acidic protein. The enzyme has an isoelectric point at pH 4.6–4.7 and a molecular weight of 34,000. TheK m-values of the acidic protein were found to be 5 mM for thiosulfate and 125 mM for cyanide.In addition to thiosulfate sulfur transferase activity, cellfree extracts ofChlorobium vibrioforme f.thiosulfatophilum also contained low thiosulfate oxidase activity and negligible thiosulfate reductase activity. The percent distribution of thiosulfate sulfur transferase and thiosulfate oxidase activities in the organism was independent of the offered sulfur compound (thiosulfate, sulfide or both) in the medium.Abbreviations C Chlorobium - SDS sodium dodecylsulfate Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

3.
An enzyme which catalyzes the reduction of bisulfite to sulfide and thiosulfate was purified from extracts of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Trithionate was not a product of this reaction nor was it or thiosulfate reduced by the enzyme. High substrate concentrations inhibited sulfide but not thiosulfate formation. The enzyme was named bisulfite reductase II to distinguish it from bisulfite reductase which reduces bisulfite to trithionate.  相似文献   

4.

A strict anaerobic bacterium, Desulfitobacterium sp. strain Y51, is capable of very efficiently dechlorinating tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) at concentrations as high as 960 μM and as low as 0.06 μM. Dechlorination was highly susceptible to air oxidation and to potential alternative electron acceptors, such as nitrite, nitrate or sulfite. The PCE reductive dehalogenase (encoded by the pceA gene and abbreviated as PceA dehalogenase) of strain Y51 was purified and characterized. The purified enzyme catalyzed the reductive dechlorination of PCE to cis-DCE at a specific activity of 113.6 nmol min−1  mg protein−1 . The apparent K m values for PCE and TCE were 105.7 and 535.3 μM, respectively. In addition to PCE and TCE, the enzyme exhibited dechlorination activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane. An 8.4-kb DNA fragment cloned from the Y51 genome revealed eight open reading frames, including the pceAB genes. Immunoblot analysis revealed that PceA dehalogenase is localized in the periplasm of Y51 cells. Production of PceA dehalogenase was induced upon addition of TCE. Significant growth inhibition of strain Y51 was observed in the presence of cis-DCE, More interestingly, the pce gene cluster was deleted with high frequency when the cells were grown with cis-DCE.

  相似文献   

5.
Magnetotactic bacteria are present at the oxic–anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non‐magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h?1 for strain J10 and 0.07 h?1 for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C‐source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C‐source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur‐oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.  相似文献   

6.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at-15°C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220 000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its K m value for thiosulfate was calculated to be 5·10-4 M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c 3 (M r =13000) and c 3 (M r =26000).  相似文献   

7.
A new fungal strain that was isolated from our library was identified as an Aspergillus oryzae and noted to produce a novel proly endopeptidase. The enzyme was isolated, purified, and characterized. The molecular mass of the prolyl endopeptidase was estimated to be 60 kDa by using SDS-PAGE. Further biochemical characterization assays revealed that the enzyme attained optimal activity at pH 4.0 with acid pH stability from 3.0 to 5.0. Its optimum temperature was 30 °C and residual activity after 30 min incubation at 55 °C was higher than 80 %. The enzyme was activated and stabilized by Ca2+ but inhibited by EDTA (10 mM) and Cu2+. The K m and k cat values of the purified enzyme for different length substrates were also evaluated, and the results imply that the enzyme from A. oryzae possesses higher affinity for the larger substrates. Furthermore, this paper demonstrates for the first time that a prolyl endopeptidase purified from A. oryzae is able to hydrolyze intact casein.  相似文献   

8.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

9.
A phytase from Penicillium oxalicum PJ3, PhyA, was purified near to homogeneity with 427-fold increase in specific phytase activity by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatographies. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis of the purified enzyme indicated an estimated molecular mass of 65 kD. The optimal pH and temperature of the purified enzyme were pH 4.5 and 55°C, respectively. The enzyme activity was strongly inhibited by Ca2+, Cu2+, Zn2+, and phenylmethylsulfonyl fluoride (PMSF). The Km value for sodium phytate was 0.545 mM with a Vmax of 600 U/mg of protein. The phyA gene was cloned, and it contains an open reading frame of 1,383 with a single intron (118 bp), and encodes a protein of 461 amino acids.  相似文献   

10.
The sulfite reductase of Desulfovibrio vulgaris, strain Miyazaki F (MF), was purified by ammonium sulfate precipitation and chromatography on DEAE-cellulose, Ultrogel AcA34, and hydroxylapatite. The molecular weight was estimated to be 180,000 by gel filtration. It had a subunit structure of α2β2; the molecular weight of the α subunit was 50,000 and that of β, 39,000. The absorption spectrum with characteristic peaks at 629 and 409 nm and the amino acid composition resembled those of the sulfite reductase from D. vulgaris, Miyazaki K. The MF enzyme reduced sulfite to trithionate, thiosulfate, and sulfide by hydrogen when coupled with a hydrogenase-methyl viologen system, like other sulfite reductases from Desulfovibrio.  相似文献   

11.
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction.  相似文献   

12.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

13.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

14.
A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co2+ or Mg2+ for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.  相似文献   

15.
Sulfide oxidation in the phototrophic purple sulfur bacterium Chromatium vinosum D (DSMZ 180T) was studied by insertional inactivation of the fccAB genes, which encode flavocytochrome c, a protein that exhibits sulfide dehydrogenase activity in vitro. Flavocytochrome c is located in the periplasmic space as shown by a PhoA fusion to the signal peptide of the hemoprotein subunit. The genotype of the flavocytochrome-c-deficient Chr. vinosum strain FD1 was verified by Southern hybridization and PCR, and the absence of flavocytochrome c in the mutant was proven at the protein level. The oxidation of thiosulfate and intracellular sulfur by the flavocytochrome-c-deficient mutant was comparable to that of the wild-type. Disruption of the fccAB genes did not have any significant effect on the sulfide-oxidizing ability of the cells, showing that flavocytochrome c is not essential for oxidation of sulfide to intracellular sulfur and indicating the presence of a distinct sulfide-oxidizing system. In accordance with these results, Chr. vinosum extracts catalyzed electron transfer from sulfide to externally added duroquinone, indicating the presence of the enzyme sulfide:quinone oxidoreductase (EC 1.8.5.-). Further investigations showed that the sulfide:quinone oxidoreductase activity was sensitive to heat and to quinone analogue inhibitors. The enzyme is strictly membrane-bound and is constitutively expressed. The presence of sulfide:quinone oxidoreductase points to a connection of sulfide oxidation to the membrane electron transport system at the level of the quinone pool in Chr. vinosum. Received: 5 November 1997 / Accepted: 30 March 1998  相似文献   

16.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

17.
The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6–7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes.  相似文献   

18.
There is a considerable potential of cold-active biocatalysts for versatile industrial applications. A psychrophilic bacterial strain, Shewanella arctica 40-3, has been isolated from arctic sea ice and was shown to exhibit pullulan-degrading activity. Purification of a monomeric, 150-kDa pullulanase was achieved using a five-step purification approach. The native enzyme was purified 50.0-fold to a final specific activity of 3.0 U/mg. The enzyme was active at a broad range of temperature (10–50 °C) and pH (5–9). Optimal activity was determined at 45 °C and pH 7. The presence of various metal ions is tolerated by the pullulanase, while detergents resulted in decreased activity. Complete conversion of pullulan to maltotriose as the sole product and N-terminal amino acid sequence indicated that the enzyme is a type-I pullulanase and belongs to rarely characterized pullulan-degrading enzymes from psychrophiles.  相似文献   

19.
Phytase (myo-inositol hexaphosphate phosphohydrolase) belongs to phosphatases. It catalyzes the hydrolysis of phytate to less-phosphorylated inorganic phosphates and phytate. Phytase is used primarily for the feeding of simple hermit animals in order to increase the usability of amino acids, minerals, phosphorus and energy. In the present study, phytase isolation from the Lactobacillus coryniformis strain, isolated from Lor cheese sources, phytase purification and characterization were studied. The phytase was purified in simple three steps. The enzyme was obtained with 2.60% recovery and a specific activity of 202.25 (EU/mg protein). The molecular mass of the enzyme was determined to be 43.25 kDa with the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. The optimum temperature and pH for the enzyme were found as 60 °C and 5.0 and respectively. To defined the substrate specificity of the phytase, the hydrolysis of several phosphorylated compounds by the purified enzyme was studied and sodium phytate showed high specificity. Furthermore, the effects of Ca2+, Ag+, Mg2+, Cu2+, Co2+, Pb2+, Zn2+ and Ni2+ metal ions on the enzyme were studied.  相似文献   

20.
Interaction of rhodanese with mitochondrial NADH dehydrogenase   总被引:2,自引:0,他引:2  
NADH dehydrogenase is an iron-sulfur flavoprotein which is isolated and purified from Complex I (mitochondrial NADH: ubiquinone oxidoreductase) by resolution with NaClO4. The activity of the enzyme (followed as NADH: 2-methylnaphthoquinone oxidoreductase) increases linearly with protein concentration (in the range between 0.2 and 1.0 mg/ml) and decreases with aging upon incubation on ice. In the present work a good correlation was found between enzymic activity and labile sulfide content, at least within the limits of sensitivity of the assays employed. Rhodanese (thiosulfate: cyanide sulfurtransferase (EC 2.8.1.1) purified from bovine liver mitochondria was shown to restore, in the presence of thiosulfate, the activity of the partly inactivated NADH dehydrogenase. Concomitantly, sulfur was transferred from thiosulfate to the flavoprotein and incorporated as acid-labile sulfide. Rhodanese-mediated sulfide transfer was directly demonstrated when the reactivation of NADH dehydrogenase was performed in the presence of radioactive thiosulfate (labeled in the outer sulfur) and the 35S-loaded flavoprotein was re-isolated by gel filtration chromatography. The results indicated that the [35S]sulfide was inserted in NADH dehydrogenase and appeared to constitute the structural basis for the increase in enzymic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号